利用机器学习自动测量青少年特发性脊柱侧凸患儿 X 射线照片上的畸形角和前凸角测量值

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2024-06-28 DOI:10.1016/j.medengphy.2024.104202
Jason Wong , Marek Reformat , Eric Parent , Edmond Lou
{"title":"利用机器学习自动测量青少年特发性脊柱侧凸患儿 X 射线照片上的畸形角和前凸角测量值","authors":"Jason Wong ,&nbsp;Marek Reformat ,&nbsp;Eric Parent ,&nbsp;Edmond Lou","doi":"10.1016/j.medengphy.2024.104202","DOIUrl":null,"url":null,"abstract":"<div><p>Measuring the kyphotic angle (KA) and lordotic angle (LA) on lateral radiographs is important to truly diagnose children with adolescent idiopathic scoliosis. However, it is a time-consuming process to measure the KA because the endplate of the upper thoracic vertebra is normally difficult to identify. To save time and improve measurement accuracy, a machine learning algorithm was developed to automatically extract the KA and LA. The accuracy and reliability of the T1-T12 KA, T5-T12 KA, and L1-L5 LA were reported. A convolutional neural network was trained using 100 radiographs with data augmentation to segment the T1-L5 vertebrae. Sixty radiographs were used to test the method. Accuracy and reliability were reported using the percentage of measurements within clinical acceptance (≤9°), standard error of measurement (SEM), and inter-method intraclass correlation coefficient (ICC<sub>2,1</sub>). The automatic method detected 95 % (57/60), 100 %, and 100 % for T1-T12 KA, T5-T12 KA, and L1-L5 LA, respectively. The clinical acceptance rate, SEM, and ICC<sub>2,1</sub> for T1-T12 KA, T5-T12 KA, and L1-L5 LA were (98 %, 0.80°, 0.91), (75 %, 4.08°, 0.60), and (97 %, 1.38°, 0.88), respectively. The automatic method measured quickly with an average of 4 ± 2 s per radiograph and illustrated how measurements were made on the image, allowing verifications by clinicians.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"130 ","pages":"Article 104202"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using machine learning to automatically measure kyphotic and lordotic angle measurements on radiographs for children with adolescent idiopathic scoliosis\",\"authors\":\"Jason Wong ,&nbsp;Marek Reformat ,&nbsp;Eric Parent ,&nbsp;Edmond Lou\",\"doi\":\"10.1016/j.medengphy.2024.104202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Measuring the kyphotic angle (KA) and lordotic angle (LA) on lateral radiographs is important to truly diagnose children with adolescent idiopathic scoliosis. However, it is a time-consuming process to measure the KA because the endplate of the upper thoracic vertebra is normally difficult to identify. To save time and improve measurement accuracy, a machine learning algorithm was developed to automatically extract the KA and LA. The accuracy and reliability of the T1-T12 KA, T5-T12 KA, and L1-L5 LA were reported. A convolutional neural network was trained using 100 radiographs with data augmentation to segment the T1-L5 vertebrae. Sixty radiographs were used to test the method. Accuracy and reliability were reported using the percentage of measurements within clinical acceptance (≤9°), standard error of measurement (SEM), and inter-method intraclass correlation coefficient (ICC<sub>2,1</sub>). The automatic method detected 95 % (57/60), 100 %, and 100 % for T1-T12 KA, T5-T12 KA, and L1-L5 LA, respectively. The clinical acceptance rate, SEM, and ICC<sub>2,1</sub> for T1-T12 KA, T5-T12 KA, and L1-L5 LA were (98 %, 0.80°, 0.91), (75 %, 4.08°, 0.60), and (97 %, 1.38°, 0.88), respectively. The automatic method measured quickly with an average of 4 ± 2 s per radiograph and illustrated how measurements were made on the image, allowing verifications by clinicians.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"130 \",\"pages\":\"Article 104202\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324001036\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在侧位X光片上测量脊柱后凸角(KA)和前凸角(LA)对于真正诊断青少年特发性脊柱侧凸患儿非常重要。然而,测量 KA 需要耗费大量时间,因为上胸椎的终板通常很难识别。为了节省时间并提高测量的准确性,我们开发了一种机器学习算法来自动提取 KA 和 LA。报告了 T1-T12 KA、T5-T12 KA 和 L1-L5 LA 的准确性和可靠性。使用 100 张带有数据增强功能的射线照片对卷积神经网络进行了训练,以分割 T1-L5 椎体。使用 60 张射线照片对该方法进行了测试。测量结果在临床接受范围内(≤9°)的百分比、测量标准误差(SEM)和方法间类内相关系数(ICC2,1)报告了准确性和可靠性。自动方法对 T1-T12 KA、T5-T12 KA 和 L1-L5 LA 的检测率分别为 95%(57/60)、100% 和 100%。T1-T12 KA、T5-T12 KA 和 L1-L5 LA 的临床接受率、SEM 和 ICC2,1 分别为 (98 %, 0.80°, 0.91)、(75 %, 4.08°, 0.60) 和 (97 %, 1.38°, 0.88)。自动方法测量速度快,平均每张 X 光片只需 4±2 秒,并能在图像上显示测量结果,便于临床医生验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using machine learning to automatically measure kyphotic and lordotic angle measurements on radiographs for children with adolescent idiopathic scoliosis

Measuring the kyphotic angle (KA) and lordotic angle (LA) on lateral radiographs is important to truly diagnose children with adolescent idiopathic scoliosis. However, it is a time-consuming process to measure the KA because the endplate of the upper thoracic vertebra is normally difficult to identify. To save time and improve measurement accuracy, a machine learning algorithm was developed to automatically extract the KA and LA. The accuracy and reliability of the T1-T12 KA, T5-T12 KA, and L1-L5 LA were reported. A convolutional neural network was trained using 100 radiographs with data augmentation to segment the T1-L5 vertebrae. Sixty radiographs were used to test the method. Accuracy and reliability were reported using the percentage of measurements within clinical acceptance (≤9°), standard error of measurement (SEM), and inter-method intraclass correlation coefficient (ICC2,1). The automatic method detected 95 % (57/60), 100 %, and 100 % for T1-T12 KA, T5-T12 KA, and L1-L5 LA, respectively. The clinical acceptance rate, SEM, and ICC2,1 for T1-T12 KA, T5-T12 KA, and L1-L5 LA were (98 %, 0.80°, 0.91), (75 %, 4.08°, 0.60), and (97 %, 1.38°, 0.88), respectively. The automatic method measured quickly with an average of 4 ± 2 s per radiograph and illustrated how measurements were made on the image, allowing verifications by clinicians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
A patient-matched prosthesis for thumb amputations: Design, mechanical and functional evaluation Influence of surface type on outdoor gait parameters measured using an In-Shoe Motion Sensor System Assessment of pre- and post-operative gait dynamics in total knee arthroplasty by a wearable capture system A novel 3D lightweight model for COVID-19 lung CT Lesion Segmentation ResGloTBNet: An interpretable deep residual network with global long-range dependency for tuberculosis screening of sputum smear microscopy images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1