使用 LSTM、BiLSTM、CNN、GRU 和 GloVe 对癌症基因突变进行分类的混合机器学习模型

Sanad Aburass , Osama Dorgham , Jamil Al Shaqsi
{"title":"使用 LSTM、BiLSTM、CNN、GRU 和 GloVe 对癌症基因突变进行分类的混合机器学习模型","authors":"Sanad Aburass ,&nbsp;Osama Dorgham ,&nbsp;Jamil Al Shaqsi","doi":"10.1016/j.sasc.2024.200110","DOIUrl":null,"url":null,"abstract":"<div><p>In our study, we introduce a novel hybrid ensemble model that synergistically combines LSTM, BiLSTM, CNN, GRU, and GloVe embeddings for the classification of gene mutations in cancer. This model was rigorously tested using Kaggle's Personalized Medicine: Redefining Cancer Treatment dataset, demonstrating exceptional performance across all evaluation metrics. Notably, our approach achieved a training accuracy of 80.6 %, precision of 81.6 %, recall of 80.6 %, and an F1 score of 83.1 %, alongside a significantly reduced Mean Squared Error (MSE) of 2.596. These results surpass those of advanced transformer models and their ensembles, showcasing our model's superior capability in handling the complexities of gene mutation classification. The accuracy and efficiency of gene mutation classification are paramount in the era of precision medicine, where tailored treatment plans based on individual genetic profiles can dramatically improve patient outcomes and save lives. Our model's remarkable performance highlights its potential in enhancing the precision of cancer diagnoses and treatments, thereby contributing significantly to the advancement of personalized healthcare.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200110"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000395/pdfft?md5=8ae5f40d03651d91a8bf2e25ac0d2e45&pid=1-s2.0-S2772941924000395-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A hybrid machine learning model for classifying gene mutations in cancer using LSTM, BiLSTM, CNN, GRU, and GloVe\",\"authors\":\"Sanad Aburass ,&nbsp;Osama Dorgham ,&nbsp;Jamil Al Shaqsi\",\"doi\":\"10.1016/j.sasc.2024.200110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In our study, we introduce a novel hybrid ensemble model that synergistically combines LSTM, BiLSTM, CNN, GRU, and GloVe embeddings for the classification of gene mutations in cancer. This model was rigorously tested using Kaggle's Personalized Medicine: Redefining Cancer Treatment dataset, demonstrating exceptional performance across all evaluation metrics. Notably, our approach achieved a training accuracy of 80.6 %, precision of 81.6 %, recall of 80.6 %, and an F1 score of 83.1 %, alongside a significantly reduced Mean Squared Error (MSE) of 2.596. These results surpass those of advanced transformer models and their ensembles, showcasing our model's superior capability in handling the complexities of gene mutation classification. The accuracy and efficiency of gene mutation classification are paramount in the era of precision medicine, where tailored treatment plans based on individual genetic profiles can dramatically improve patient outcomes and save lives. Our model's remarkable performance highlights its potential in enhancing the precision of cancer diagnoses and treatments, thereby contributing significantly to the advancement of personalized healthcare.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000395/pdfft?md5=8ae5f40d03651d91a8bf2e25ac0d2e45&pid=1-s2.0-S2772941924000395-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们的研究中,我们介绍了一种新型混合集合模型,该模型将 LSTM、BiLSTM、CNN、GRU 和 GloVe 嵌入协同结合,用于癌症基因突变分类。该模型在 Kaggle 的 "个性化医疗"(Personalized Medicine:重新定义癌症治疗》数据集进行了严格测试,在所有评估指标中均表现出优异的性能。值得注意的是,我们的方法达到了 80.6% 的训练准确率、81.6% 的精确率、80.6% 的召回率和 83.1% 的 F1 分数,同时显著降低了 2.596 的平均平方误差 (MSE)。这些结果超过了先进的转换器模型及其集合,展示了我们的模型在处理复杂的基因突变分类方面的卓越能力。在精准医疗时代,基因突变分类的准确性和效率至关重要,基于个体基因图谱的定制化治疗方案可以显著改善患者的预后并挽救生命。我们模型的出色表现彰显了它在提高癌症诊断和治疗的精确度方面的潜力,从而为推动个性化医疗做出了巨大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid machine learning model for classifying gene mutations in cancer using LSTM, BiLSTM, CNN, GRU, and GloVe

In our study, we introduce a novel hybrid ensemble model that synergistically combines LSTM, BiLSTM, CNN, GRU, and GloVe embeddings for the classification of gene mutations in cancer. This model was rigorously tested using Kaggle's Personalized Medicine: Redefining Cancer Treatment dataset, demonstrating exceptional performance across all evaluation metrics. Notably, our approach achieved a training accuracy of 80.6 %, precision of 81.6 %, recall of 80.6 %, and an F1 score of 83.1 %, alongside a significantly reduced Mean Squared Error (MSE) of 2.596. These results surpass those of advanced transformer models and their ensembles, showcasing our model's superior capability in handling the complexities of gene mutation classification. The accuracy and efficiency of gene mutation classification are paramount in the era of precision medicine, where tailored treatment plans based on individual genetic profiles can dramatically improve patient outcomes and save lives. Our model's remarkable performance highlights its potential in enhancing the precision of cancer diagnoses and treatments, thereby contributing significantly to the advancement of personalized healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A systematic assessment of sentiment analysis models on iraqi dialect-based texts An Enhancement of Bilateral Closed-Loop Functions in Stability Standards for Networked Control Systems with Transmission Delay Application of improved particle swarm optimization algorithm combined with genetic algorithm in shear wall design Path planning of factory handling robot integrating fuzzy logic-PID control technology Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1