{"title":"γ-TuRC的低温电子显微镜结构揭示了微管成核的分子奥秘","authors":"Léa Mammri, Paul T. Conduit","doi":"10.1038/s41594-024-01345-z","DOIUrl":null,"url":null,"abstract":"Microtubules within cells often have 13 protofilaments but are nucleated by multi-protein y-TuRCs complexes that display 14 γ-tubulin molecules. High-resolution cryo-EM structures of γ-TuRCs after nucleation show that these γ-TuRCs ‘close’ during nucleation to display only 13 γ-tubulin molecules for protofilament assembly.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 7","pages":"1004-1006"},"PeriodicalIF":12.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryo-EM structures of γ-TuRC reveal molecular insights into microtubule nucleation\",\"authors\":\"Léa Mammri, Paul T. Conduit\",\"doi\":\"10.1038/s41594-024-01345-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microtubules within cells often have 13 protofilaments but are nucleated by multi-protein y-TuRCs complexes that display 14 γ-tubulin molecules. High-resolution cryo-EM structures of γ-TuRCs after nucleation show that these γ-TuRCs ‘close’ during nucleation to display only 13 γ-tubulin molecules for protofilament assembly.\",\"PeriodicalId\":49141,\"journal\":{\"name\":\"Nature Structural & Molecular Biology\",\"volume\":\"31 7\",\"pages\":\"1004-1006\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Structural & Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41594-024-01345-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01345-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cryo-EM structures of γ-TuRC reveal molecular insights into microtubule nucleation
Microtubules within cells often have 13 protofilaments but are nucleated by multi-protein y-TuRCs complexes that display 14 γ-tubulin molecules. High-resolution cryo-EM structures of γ-TuRCs after nucleation show that these γ-TuRCs ‘close’ during nucleation to display only 13 γ-tubulin molecules for protofilament assembly.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.