Anders Dahlin, Kasper H. Blinkenberg, Alvar Braathen, Snorre Olaussen, Kim Senger, Aleksandra Smyrak-Sikora, Lars Stemmerik
{"title":"挪威北极斯匹次卑尔根岛西南部霍恩松德,基底高地硅碎屑岩-碳酸盐混合演替的晚期同步断裂到早期断裂后盆地填充动力学","authors":"Anders Dahlin, Kasper H. Blinkenberg, Alvar Braathen, Snorre Olaussen, Kim Senger, Aleksandra Smyrak-Sikora, Lars Stemmerik","doi":"10.1111/bre.12880","DOIUrl":null,"url":null,"abstract":"<p>The transition from syn-rift to post-rift sedimentation in rift basins is difficult to characterize in terms of stratigraphic architecture and dominating control on sedimentation, due to decreasing tectonic activity interplaying with regional subsidence, eustatic sea level changes, and differential compaction of underlying syn-rift sediments. Our case study of the Late Palaeozoic Inner Hornsund Fault Zone targets late syn-rift strata recorded in the (?Pennsylvanian – ?lower Permian) Treskelodden Formation in Hornsund, southern Spitsbergen, representing a mixed siliciclastic-carbonate succession, with siliciclastics primarily sourced from the adjacent Sørkapp-Hornsund High. We document local scale (<10 km) facies variability, sequence stratigraphy, and evolution of a succession deposited along a flank of the structural high during the late syn-rift stage. We observe that during the transition towards rift termination (glacio-)eustatic sea level changes and overall regional flooding became a more prominent forcing factor controlling sedimentation. Our dataset includes sedimentary logs, microfacies analysis, and high-resolution digital outcrop models. We identify four progressively backstepping stratigraphic sequences, reflecting an evolution from (1) terrestrial siliciclastics through (2–3) nearshore mixed siliciclastic–carbonates, to (4) carbonate ramp deposits. On the small scale (<5 m) the internal sediment cyclicity of the succession was formed by autogenic processes, particularly the changing rate of sediment input from the southwestern source area (the uplifted Sørkapp-Hornsund basement high). On the larger scale (10s of m), the importance of glacio-eustatic sea-level changes, driven by waxing and waning of ice caps in the southern hemisphere (Gondwana), increased as the rift-related tectonics decreased. The interdisciplinary methods used in this study provide new knowledge of the Middle Pennsylvanian to Permian depositional evolution in southern Spitsbergen, besides a novel framework for comparison to adjacent basins in the region and similar basins elsewhere.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12880","citationCount":"0","resultStr":"{\"title\":\"Late syn-rift to early post-rift basin fill dynamics of a mixed siliciclastic-carbonate succession banked to a basement high, Hornsund, southwestern Spitsbergen, Arctic Norway\",\"authors\":\"Anders Dahlin, Kasper H. Blinkenberg, Alvar Braathen, Snorre Olaussen, Kim Senger, Aleksandra Smyrak-Sikora, Lars Stemmerik\",\"doi\":\"10.1111/bre.12880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transition from syn-rift to post-rift sedimentation in rift basins is difficult to characterize in terms of stratigraphic architecture and dominating control on sedimentation, due to decreasing tectonic activity interplaying with regional subsidence, eustatic sea level changes, and differential compaction of underlying syn-rift sediments. Our case study of the Late Palaeozoic Inner Hornsund Fault Zone targets late syn-rift strata recorded in the (?Pennsylvanian – ?lower Permian) Treskelodden Formation in Hornsund, southern Spitsbergen, representing a mixed siliciclastic-carbonate succession, with siliciclastics primarily sourced from the adjacent Sørkapp-Hornsund High. We document local scale (<10 km) facies variability, sequence stratigraphy, and evolution of a succession deposited along a flank of the structural high during the late syn-rift stage. We observe that during the transition towards rift termination (glacio-)eustatic sea level changes and overall regional flooding became a more prominent forcing factor controlling sedimentation. Our dataset includes sedimentary logs, microfacies analysis, and high-resolution digital outcrop models. We identify four progressively backstepping stratigraphic sequences, reflecting an evolution from (1) terrestrial siliciclastics through (2–3) nearshore mixed siliciclastic–carbonates, to (4) carbonate ramp deposits. On the small scale (<5 m) the internal sediment cyclicity of the succession was formed by autogenic processes, particularly the changing rate of sediment input from the southwestern source area (the uplifted Sørkapp-Hornsund basement high). On the larger scale (10s of m), the importance of glacio-eustatic sea-level changes, driven by waxing and waning of ice caps in the southern hemisphere (Gondwana), increased as the rift-related tectonics decreased. The interdisciplinary methods used in this study provide new knowledge of the Middle Pennsylvanian to Permian depositional evolution in southern Spitsbergen, besides a novel framework for comparison to adjacent basins in the region and similar basins elsewhere.</p>\",\"PeriodicalId\":8712,\"journal\":{\"name\":\"Basin Research\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12880\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basin Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bre.12880\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12880","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Late syn-rift to early post-rift basin fill dynamics of a mixed siliciclastic-carbonate succession banked to a basement high, Hornsund, southwestern Spitsbergen, Arctic Norway
The transition from syn-rift to post-rift sedimentation in rift basins is difficult to characterize in terms of stratigraphic architecture and dominating control on sedimentation, due to decreasing tectonic activity interplaying with regional subsidence, eustatic sea level changes, and differential compaction of underlying syn-rift sediments. Our case study of the Late Palaeozoic Inner Hornsund Fault Zone targets late syn-rift strata recorded in the (?Pennsylvanian – ?lower Permian) Treskelodden Formation in Hornsund, southern Spitsbergen, representing a mixed siliciclastic-carbonate succession, with siliciclastics primarily sourced from the adjacent Sørkapp-Hornsund High. We document local scale (<10 km) facies variability, sequence stratigraphy, and evolution of a succession deposited along a flank of the structural high during the late syn-rift stage. We observe that during the transition towards rift termination (glacio-)eustatic sea level changes and overall regional flooding became a more prominent forcing factor controlling sedimentation. Our dataset includes sedimentary logs, microfacies analysis, and high-resolution digital outcrop models. We identify four progressively backstepping stratigraphic sequences, reflecting an evolution from (1) terrestrial siliciclastics through (2–3) nearshore mixed siliciclastic–carbonates, to (4) carbonate ramp deposits. On the small scale (<5 m) the internal sediment cyclicity of the succession was formed by autogenic processes, particularly the changing rate of sediment input from the southwestern source area (the uplifted Sørkapp-Hornsund basement high). On the larger scale (10s of m), the importance of glacio-eustatic sea-level changes, driven by waxing and waning of ice caps in the southern hemisphere (Gondwana), increased as the rift-related tectonics decreased. The interdisciplinary methods used in this study provide new knowledge of the Middle Pennsylvanian to Permian depositional evolution in southern Spitsbergen, besides a novel framework for comparison to adjacent basins in the region and similar basins elsewhere.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.