{"title":"鉴定负责两种卟吩生物碱的生物合成及其在酵母中从头生物合成的细胞色素 P450s。","authors":"Qishuang Li, Xiang Jiao, Xinyi Li, Wenlong Shi, Ying Ma, Xiangmei Tan, Jingyi Gan, Jimei Liu, Jian Yang, Jian Wang, Baolong Jin, Tong Chen, Ping Su, Yujun Zhao, Yifeng Zhang, Jinfu Tang, Guanghong Cui, Yun Chen, Juan Guo, Luqi Huang","doi":"10.1111/jipb.13724","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (<i>S</i>)-configured and (<i>R</i>)-configured substrates from the herbaceous perennial vine <i>Stephania tetrandra</i>, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (<i>Saccharomyces cerevisiae</i>) for the <i>de novo</i> production of compounds such as (<i>R</i>)-glaziovine, (<i>S</i>)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":"66 8","pages":"1703-1717"},"PeriodicalIF":9.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of the cytochrome P450s responsible for the biosynthesis of two types of aporphine alkaloids and their de novo biosynthesis in yeast\",\"authors\":\"Qishuang Li, Xiang Jiao, Xinyi Li, Wenlong Shi, Ying Ma, Xiangmei Tan, Jingyi Gan, Jimei Liu, Jian Yang, Jian Wang, Baolong Jin, Tong Chen, Ping Su, Yujun Zhao, Yifeng Zhang, Jinfu Tang, Guanghong Cui, Yun Chen, Juan Guo, Luqi Huang\",\"doi\":\"10.1111/jipb.13724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (<i>S</i>)-configured and (<i>R</i>)-configured substrates from the herbaceous perennial vine <i>Stephania tetrandra</i>, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (<i>Saccharomyces cerevisiae</i>) for the <i>de novo</i> production of compounds such as (<i>R</i>)-glaziovine, (<i>S</i>)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.</p></div>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\"66 8\",\"pages\":\"1703-1717\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13724\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13724","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
卟吩生物碱具有多种药理活性,但我们对其生物合成的了解却相对有限。以前的研究根据 D 环的构型和取代基数目将卟吩生物碱分为两类,并为每一类提出了初步的生物合成途径。在这项研究中,我们从多年生草本藤本植物 Stephania tetrandra 中鉴定出了两种特定的细胞色素 P450 酶(CYP80G6 和 CYP80Q5),它们对(S)构型和(R)构型底物具有不同的活性,从而揭示了这两类卟吩生物碱的生物合成机制和立体化学特征。此外,我们还鉴定了两种 CYP719C 酶(CYP719C3 和 CYP719C4)的特性,这两种酶分别催化卟吩生物碱 A 环和 D 环上重要药效基团亚甲基二氧桥的形成。通过对这些关键细胞色素 P450 酶的功能表征,我们重建了两种卟吩生物碱在芽殖酵母(Saccharomyces cerevisiae)中的生物合成途径,以从头生产 (R)-glaziovine、(S)-glaziovine 和 magnoflorine 等化合物。这项研究为了解卟吩生物碱的生物合成提供了重要信息,并为通过合成生物学生产这些宝贵的化合物奠定了基础。
Identification of the cytochrome P450s responsible for the biosynthesis of two types of aporphine alkaloids and their de novo biosynthesis in yeast
Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (S)-configured and (R)-configured substrates from the herbaceous perennial vine Stephania tetrandra, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (Saccharomyces cerevisiae) for the de novo production of compounds such as (R)-glaziovine, (S)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.