{"title":"COVID-19 大流行期间急性冠状动脉综合征患者预后预测模型的适应性。","authors":"Masahiro Nishi, Takeshi Nakamura, Kenji Yanishi, Satoaki Matoba","doi":"10.1136/bmjhci-2024-101074","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The detrimental repercussions of the COVID-19 pandemic on the quality of care and clinical outcomes for patients with acute coronary syndrome (ACS) necessitate a rigorous re-evaluation of prognostic prediction models in the context of the pandemic environment. This study aimed to elucidate the adaptability of prediction models for 30-day mortality in patients with ACS during the pandemic periods.</p><p><strong>Methods: </strong>A total of 2041 consecutive patients with ACS were included from 32 institutions between December 2020 and April 2023. The dataset comprised patients who were admitted for ACS and underwent coronary angiography for the diagnosis during hospitalisation. The prediction accuracy of the Global Registry of Acute Coronary Events (GRACE) and a machine learning model, KOTOMI, was evaluated for 30-day mortality in patients with ST-elevation acute myocardial infarction (STEMI) and non-ST-elevation acute coronary syndrome (NSTE-ACS).</p><p><strong>Results: </strong>The area under the receiver operating characteristics curve (AUROC) was 0.85 (95% CI 0.81 to 0.89) in the GRACE and 0.87 (95% CI 0.82 to 0.91) in the KOTOMI for STEMI. The difference of 0.020 (95% CI -0.098-0.13) was not significant. For NSTE-ACS, the respective AUROCs were 0.82 (95% CI 0.73 to 0.91) in the GRACE and 0.83 (95% CI 0.74 to 0.91) in the KOTOMI, also demonstrating insignificant difference of 0.010 (95% CI -0.023 to 0.25). The prediction accuracy of both models had consistency in patients with STEMI and insignificant variation in patients with NSTE-ACS between the pandemic periods.</p><p><strong>Conclusions: </strong>The prediction models maintained high accuracy for 30-day mortality of patients with ACS even in the pandemic periods, despite marginal variation observed.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218009/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptability of prognostic prediction models for patients with acute coronary syndrome during the COVID-19 pandemic.\",\"authors\":\"Masahiro Nishi, Takeshi Nakamura, Kenji Yanishi, Satoaki Matoba\",\"doi\":\"10.1136/bmjhci-2024-101074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The detrimental repercussions of the COVID-19 pandemic on the quality of care and clinical outcomes for patients with acute coronary syndrome (ACS) necessitate a rigorous re-evaluation of prognostic prediction models in the context of the pandemic environment. This study aimed to elucidate the adaptability of prediction models for 30-day mortality in patients with ACS during the pandemic periods.</p><p><strong>Methods: </strong>A total of 2041 consecutive patients with ACS were included from 32 institutions between December 2020 and April 2023. The dataset comprised patients who were admitted for ACS and underwent coronary angiography for the diagnosis during hospitalisation. The prediction accuracy of the Global Registry of Acute Coronary Events (GRACE) and a machine learning model, KOTOMI, was evaluated for 30-day mortality in patients with ST-elevation acute myocardial infarction (STEMI) and non-ST-elevation acute coronary syndrome (NSTE-ACS).</p><p><strong>Results: </strong>The area under the receiver operating characteristics curve (AUROC) was 0.85 (95% CI 0.81 to 0.89) in the GRACE and 0.87 (95% CI 0.82 to 0.91) in the KOTOMI for STEMI. The difference of 0.020 (95% CI -0.098-0.13) was not significant. For NSTE-ACS, the respective AUROCs were 0.82 (95% CI 0.73 to 0.91) in the GRACE and 0.83 (95% CI 0.74 to 0.91) in the KOTOMI, also demonstrating insignificant difference of 0.010 (95% CI -0.023 to 0.25). The prediction accuracy of both models had consistency in patients with STEMI and insignificant variation in patients with NSTE-ACS between the pandemic periods.</p><p><strong>Conclusions: </strong>The prediction models maintained high accuracy for 30-day mortality of patients with ACS even in the pandemic periods, despite marginal variation observed.</p>\",\"PeriodicalId\":9050,\"journal\":{\"name\":\"BMJ Health & Care Informatics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218009/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Health & Care Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjhci-2024-101074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2024-101074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
摘要
背景:COVID-19 大流行对急性冠状动脉综合征(ACS)患者的护理质量和临床结果造成了不利影响,因此有必要在大流行环境下对预后预测模型进行严格的重新评估。本研究旨在阐明大流行期间急性冠状动脉综合征患者 30 天死亡率预测模型的适应性:在 2020 年 12 月至 2023 年 4 月期间,32 家机构共纳入了 2041 名连续的 ACS 患者。数据集包括因 ACS 入院并在住院期间接受冠状动脉造影诊断的患者。评估了全球急性冠脉事件登记(GRACE)和机器学习模型KOTOMI对ST段抬高急性心肌梗死(STEMI)和非ST段抬高急性冠脉综合征(NSTE-ACS)患者30天死亡率的预测准确性:对于 STEMI,GRACE 和 KOTOMI 的接收者操作特征曲线下面积(AUROC)分别为 0.85(95% CI 0.81 至 0.89)和 0.87(95% CI 0.82 至 0.91)。0.020(95% CI -0.098-0.13)的差异并不显著。对于NSTE-ACS,GRACE和KOTOMI的AUROCs分别为0.82(95% CI 0.73至0.91)和0.83(95% CI 0.74至0.91),也显示出0.010(95% CI -0.023至0.25)的差异不显著。两种模型对 STEMI 患者的预测准确性具有一致性,而对 NSTE-ACS 患者的预测准确性在大流行期间差异不大:结论:即使在大流行期间,预测模型对 ACS 患者 30 天死亡率的预测也保持了较高的准确性,尽管观察到的差异很小。
Adaptability of prognostic prediction models for patients with acute coronary syndrome during the COVID-19 pandemic.
Background: The detrimental repercussions of the COVID-19 pandemic on the quality of care and clinical outcomes for patients with acute coronary syndrome (ACS) necessitate a rigorous re-evaluation of prognostic prediction models in the context of the pandemic environment. This study aimed to elucidate the adaptability of prediction models for 30-day mortality in patients with ACS during the pandemic periods.
Methods: A total of 2041 consecutive patients with ACS were included from 32 institutions between December 2020 and April 2023. The dataset comprised patients who were admitted for ACS and underwent coronary angiography for the diagnosis during hospitalisation. The prediction accuracy of the Global Registry of Acute Coronary Events (GRACE) and a machine learning model, KOTOMI, was evaluated for 30-day mortality in patients with ST-elevation acute myocardial infarction (STEMI) and non-ST-elevation acute coronary syndrome (NSTE-ACS).
Results: The area under the receiver operating characteristics curve (AUROC) was 0.85 (95% CI 0.81 to 0.89) in the GRACE and 0.87 (95% CI 0.82 to 0.91) in the KOTOMI for STEMI. The difference of 0.020 (95% CI -0.098-0.13) was not significant. For NSTE-ACS, the respective AUROCs were 0.82 (95% CI 0.73 to 0.91) in the GRACE and 0.83 (95% CI 0.74 to 0.91) in the KOTOMI, also demonstrating insignificant difference of 0.010 (95% CI -0.023 to 0.25). The prediction accuracy of both models had consistency in patients with STEMI and insignificant variation in patients with NSTE-ACS between the pandemic periods.
Conclusions: The prediction models maintained high accuracy for 30-day mortality of patients with ACS even in the pandemic periods, despite marginal variation observed.