TRIM26 的多重功能:从免疫调节到肿瘤学。

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein and Peptide Letters Pub Date : 2024-07-02 DOI:10.2174/0109298665311516240621114519
Jialai Zou, Kaiyi Niu, Tao Lu, Jianxun Kan, Hao Cheng, Lijian Xu
{"title":"TRIM26 的多重功能:从免疫调节到肿瘤学。","authors":"Jialai Zou, Kaiyi Niu, Tao Lu, Jianxun Kan, Hao Cheng, Lijian Xu","doi":"10.2174/0109298665311516240621114519","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Multifunction of TRIM26: From Immune Regulation to Oncology.\",\"authors\":\"Jialai Zou, Kaiyi Niu, Tao Lu, Jianxun Kan, Hao Cheng, Lijian Xu\",\"doi\":\"10.2174/0109298665311516240621114519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.</p>\",\"PeriodicalId\":20736,\"journal\":{\"name\":\"Protein and Peptide Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein and Peptide Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298665311516240621114519\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665311516240621114519","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

泛素化是一种重要的翻译后修饰,在几乎所有生理过程中都发挥着作用。其功能的实现取决于一系列涉及众多蛋白酶的催化反应。TRIM26 是 TRIM 家族的一种蛋白质,因其 RING 结构域而具有 E3 泛素连接酶活性,存在于不同的细胞系中。在过去的几十年中,TRIM26 已被证实作为控制者参与了许多生理和病理过程,显示出多种多样的生物学作用。尽管人们对 TRIM26 的研究兴趣与日俱增,但现有综述对该蛋白结构和功能的研究却十分有限。本综述首先简要概述了 TRIM26 的组成和定位,然后探讨了它在免疫反应、病毒入侵和炎症过程中的作用。同时,我们展示了 TRIM26 对各种疾病(包括多种恶性肿瘤和神经系统疾病)进展的贡献。最后,我们探讨了 TRIM26 未来研究的潜在领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Multifunction of TRIM26: From Immune Regulation to Oncology.

Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
期刊最新文献
Insights into the Evolutionary Dynamics: Characterization of Disintegrin and Metalloproteinase Proteins in the Venom Gland Transcriptome of the Hemiscorpius lepturus Scorpion. Investigation of the Expression and Regulation of SCG5 in the Context of the Chromogranin-Secretogranin Family in Malignant Tumors. Macromolecular Polymer Based Complexes: A Diverse Strategy for the Delivery of Nucleotides. Expression, Purification, and Evaluation of Antibody Responses and Antibody-Immunogen Complex Simulation of a Designed Multi-Epitope Vaccine against SARS-COV-2. Different VH3-Binding Protein A Resins Show Comparable VH3-Binding Mediated By product Separation Capabilities Despite Having Varied Dynamic Binding Capacities Towards A VH3 Fab.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1