关于接触蚕丝纤维素培养纤维可能导致淀粉样变性病风险的研究。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-07-15 DOI:10.1088/2057-1976/ad5e86
Satomi Osawa, Susumu Iwaide, Kyoko Kobayashi, Ryohei Oba, Tomoaki Murakami
{"title":"关于接触蚕丝纤维素培养纤维可能导致淀粉样变性病风险的研究。","authors":"Satomi Osawa, Susumu Iwaide, Kyoko Kobayashi, Ryohei Oba, Tomoaki Murakami","doi":"10.1088/2057-1976/ad5e86","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid A (AA) amyloidosis is induced by administering amyloid fibrils to animals under inflammatory conditions. Silk fibroin (SF), the main component of silk threads, forms amyloid-like fibrils and has been previously reported to induce AA amyloidosis in mice. In this study, SF was cultured in ethanol solution, and after confirming fibril formation through thioflavin T assay, Congo red assay, and observation under electron microscopy, cultured SF ethanol solutions were administered to mice via various routes to investigate the induction of target organs and amyloidosis. As a result, cultured SF ethanol solutions were confirmed to reach the lungs and spleen, but no amyloid deposition was observed. While SF forms amyloid-like fibril structures through cultivation in ethanol solution, its amyloid-enhancing factor (AEF) activity is considered low in mice.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies on the potential risk of amyloidosis from exposure to cultured fibril from silk fibroin.\",\"authors\":\"Satomi Osawa, Susumu Iwaide, Kyoko Kobayashi, Ryohei Oba, Tomoaki Murakami\",\"doi\":\"10.1088/2057-1976/ad5e86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyloid A (AA) amyloidosis is induced by administering amyloid fibrils to animals under inflammatory conditions. Silk fibroin (SF), the main component of silk threads, forms amyloid-like fibrils and has been previously reported to induce AA amyloidosis in mice. In this study, SF was cultured in ethanol solution, and after confirming fibril formation through thioflavin T assay, Congo red assay, and observation under electron microscopy, cultured SF ethanol solutions were administered to mice via various routes to investigate the induction of target organs and amyloidosis. As a result, cultured SF ethanol solutions were confirmed to reach the lungs and spleen, but no amyloid deposition was observed. While SF forms amyloid-like fibril structures through cultivation in ethanol solution, its amyloid-enhancing factor (AEF) activity is considered low in mice.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad5e86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad5e86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

淀粉样蛋白 A(AA)淀粉样变性是在炎症条件下给动物注射淀粉样蛋白纤维而诱发的。蚕丝纤维素(SF)是丝线的主要成分,可形成淀粉样纤维,以前曾有报道称它能诱导小鼠发生 AA 淀粉样变性。本研究将 SF 培养在乙醇溶液中,通过硫黄 T 试验、刚果红试验和电子显微镜观察确认纤维形成后,将培养的 SF 乙醇溶液通过不同途径给小鼠注射,研究其诱导靶器官和淀粉样变性的情况。结果证实,培养的 SF 乙醇溶液可到达肺部和脾脏,但未观察到淀粉样沉积。虽然 SF 通过在乙醇溶液中培养形成了淀粉样纤维结构,但其淀粉样增强因子(AEF)在小鼠体内的活性被认为很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studies on the potential risk of amyloidosis from exposure to cultured fibril from silk fibroin.

Amyloid A (AA) amyloidosis is induced by administering amyloid fibrils to animals under inflammatory conditions. Silk fibroin (SF), the main component of silk threads, forms amyloid-like fibrils and has been previously reported to induce AA amyloidosis in mice. In this study, SF was cultured in ethanol solution, and after confirming fibril formation through thioflavin T assay, Congo red assay, and observation under electron microscopy, cultured SF ethanol solutions were administered to mice via various routes to investigate the induction of target organs and amyloidosis. As a result, cultured SF ethanol solutions were confirmed to reach the lungs and spleen, but no amyloid deposition was observed. While SF forms amyloid-like fibril structures through cultivation in ethanol solution, its amyloid-enhancing factor (AEF) activity is considered low in mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review. Assessing Anticancer Properties of PEGylated Platinum Nanoparticles on Human Breast Cancer Cell lines using in-vitro Assays. Prediction of directional solidification in freeze casting of biomaterial scaffolds using physics-informed neural networks. Synthetic CT generation from CBCT based on structural constraint cycle-EEM-GAN Detection of Invasive Ductal Carcinoma by Electrical Impedance Spectroscopy Implementing Gaussian Relaxation-Time Distribution (EIS-GRTD).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1