Xichen Wan, Jiayu Gu, Xujiao Zhou, Qihua Le, Jingyuan Wang, ChangChang Xin, Zhi Chen, Yao He, Jiaxu Hong
{"title":"建立人角膜上皮细胞器官组织,用于干眼症的体外建模。","authors":"Xichen Wan, Jiayu Gu, Xujiao Zhou, Qihua Le, Jingyuan Wang, ChangChang Xin, Zhi Chen, Yao He, Jiaxu Hong","doi":"10.1111/cpr.13704","DOIUrl":null,"url":null,"abstract":"<p>Dry eye disease (DED) is a growing public health concern affecting millions of people worldwide and causing ocular discomfort and visual disturbance. Developing its therapeutic drugs based on animal models suffer from interspecies differences and poor prediction of human trials. Here, we established long-term 3D human corneal epithelial organoids, which recapitulated the cell lineages and gene expression signature of the human corneal epithelium. Organoids can be regulated to differentiate ex vivo, but the addition of FGF10 inhibits this process. In the hyperosmolar-induced DED organoid model, the release of inflammatory factors increased, resulting in damage to the stemness of stem cells and a decrease in functional mucin 1 protein. Furthermore, we found that the organoids could mimic clinical drug treatment responses, suggesting that corneal epithelial organoids are promising candidates for establishing a drug testing platform ex vivo. In summary, we established a functional, long-term 3D human epithelial organoid that may serve as an ex vivo model for studying the functional regulation and disease modelling.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":"57 11","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cpr.13704","citationCount":"0","resultStr":"{\"title\":\"Establishment of human corneal epithelial organoids for ex vivo modelling dry eye disease\",\"authors\":\"Xichen Wan, Jiayu Gu, Xujiao Zhou, Qihua Le, Jingyuan Wang, ChangChang Xin, Zhi Chen, Yao He, Jiaxu Hong\",\"doi\":\"10.1111/cpr.13704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dry eye disease (DED) is a growing public health concern affecting millions of people worldwide and causing ocular discomfort and visual disturbance. Developing its therapeutic drugs based on animal models suffer from interspecies differences and poor prediction of human trials. Here, we established long-term 3D human corneal epithelial organoids, which recapitulated the cell lineages and gene expression signature of the human corneal epithelium. Organoids can be regulated to differentiate ex vivo, but the addition of FGF10 inhibits this process. In the hyperosmolar-induced DED organoid model, the release of inflammatory factors increased, resulting in damage to the stemness of stem cells and a decrease in functional mucin 1 protein. Furthermore, we found that the organoids could mimic clinical drug treatment responses, suggesting that corneal epithelial organoids are promising candidates for establishing a drug testing platform ex vivo. In summary, we established a functional, long-term 3D human epithelial organoid that may serve as an ex vivo model for studying the functional regulation and disease modelling.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\"57 11\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cpr.13704\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cpr.13704\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cpr.13704","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Establishment of human corneal epithelial organoids for ex vivo modelling dry eye disease
Dry eye disease (DED) is a growing public health concern affecting millions of people worldwide and causing ocular discomfort and visual disturbance. Developing its therapeutic drugs based on animal models suffer from interspecies differences and poor prediction of human trials. Here, we established long-term 3D human corneal epithelial organoids, which recapitulated the cell lineages and gene expression signature of the human corneal epithelium. Organoids can be regulated to differentiate ex vivo, but the addition of FGF10 inhibits this process. In the hyperosmolar-induced DED organoid model, the release of inflammatory factors increased, resulting in damage to the stemness of stem cells and a decrease in functional mucin 1 protein. Furthermore, we found that the organoids could mimic clinical drug treatment responses, suggesting that corneal epithelial organoids are promising candidates for establishing a drug testing platform ex vivo. In summary, we established a functional, long-term 3D human epithelial organoid that may serve as an ex vivo model for studying the functional regulation and disease modelling.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.