{"title":"SARS-CoV-2 Omicron EG.5.1 变体的病毒学特征。","authors":"Shuhei Tsujino, Sayaka Deguchi, Tomo Nomai, Miguel Padilla-Blanco, Arnon Plianchaisuk, Lei Wang, MST Monira Begum, Keiya Uriu, Keita Mizuma, Naganori Nao, Isshu Kojima, Tomoya Tsubo, Jingshu Li, Yasufumi Matsumura, Miki Nagao, Yoshitaka Oda, Masumi Tsuda, Yuki Anraku, Shunsuke Kita, Hisano Yajima, Kaori Sasaki-Tabata, Ziyi Guo, Alfredo A. Hinay Jr., Kumiko Yoshimatsu, Yuki Yamamoto, Tetsuharu Nagamoto, Hiroyuki Asakura, Mami Nagashima, Kenji Sadamasu, Kazuhisa Yoshimura, Hesham Nasser, Michael Jonathan, Olivia Putri, Yoonjin Kim, Luo Chen, Rigel Suzuki, Tomokazu Tamura, Katsumi Maenaka, Takashi Irie, Keita Matsuno, Shinya Tanaka, Jumpei Ito, Terumasa Ikeda, Kazuo Takayama, Jiri Zahradnik, Takao Hashiguchi, Takasuke Fukuhara, Kei Sato, The Genotype to Phenotype Japan (G2P-Japan) Consortium","doi":"10.1111/1348-0421.13165","DOIUrl":null,"url":null,"abstract":"<p>In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 9","pages":"305-330"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1348-0421.13165","citationCount":"0","resultStr":"{\"title\":\"Virological characteristics of the SARS-CoV-2 Omicron EG.5.1 variant\",\"authors\":\"Shuhei Tsujino, Sayaka Deguchi, Tomo Nomai, Miguel Padilla-Blanco, Arnon Plianchaisuk, Lei Wang, MST Monira Begum, Keiya Uriu, Keita Mizuma, Naganori Nao, Isshu Kojima, Tomoya Tsubo, Jingshu Li, Yasufumi Matsumura, Miki Nagao, Yoshitaka Oda, Masumi Tsuda, Yuki Anraku, Shunsuke Kita, Hisano Yajima, Kaori Sasaki-Tabata, Ziyi Guo, Alfredo A. Hinay Jr., Kumiko Yoshimatsu, Yuki Yamamoto, Tetsuharu Nagamoto, Hiroyuki Asakura, Mami Nagashima, Kenji Sadamasu, Kazuhisa Yoshimura, Hesham Nasser, Michael Jonathan, Olivia Putri, Yoonjin Kim, Luo Chen, Rigel Suzuki, Tomokazu Tamura, Katsumi Maenaka, Takashi Irie, Keita Matsuno, Shinya Tanaka, Jumpei Ito, Terumasa Ikeda, Kazuo Takayama, Jiri Zahradnik, Takao Hashiguchi, Takasuke Fukuhara, Kei Sato, The Genotype to Phenotype Japan (G2P-Japan) Consortium\",\"doi\":\"10.1111/1348-0421.13165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.</p>\",\"PeriodicalId\":18679,\"journal\":{\"name\":\"Microbiology and Immunology\",\"volume\":\"68 9\",\"pages\":\"305-330\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1348-0421.13165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13165\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13165","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Virological characteristics of the SARS-CoV-2 Omicron EG.5.1 variant
In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.