Caroline A McCormick, Stuart Akeson, Sepideh Tavakoli, Dylan Bloch, Isabel N Klink, Miten Jain, Sara H Rouhanifard
{"title":"用于纳米孔直接 RNA 分析的多细胞、IVT 衍生、未修饰的人类转录组。","authors":"Caroline A McCormick, Stuart Akeson, Sepideh Tavakoli, Dylan Bloch, Isabel N Klink, Miten Jain, Sara H Rouhanifard","doi":"10.46471/gigabyte.129","DOIUrl":null,"url":null,"abstract":"<p><p>Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically-derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analyses. We produced DRS datasets using modification-free transcripts from <i>in vitro</i> transcription of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analyses of human transcripts.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte129"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221353/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis.\",\"authors\":\"Caroline A McCormick, Stuart Akeson, Sepideh Tavakoli, Dylan Bloch, Isabel N Klink, Miten Jain, Sara H Rouhanifard\",\"doi\":\"10.46471/gigabyte.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically-derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analyses. We produced DRS datasets using modification-free transcripts from <i>in vitro</i> transcription of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analyses of human transcripts.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2024 \",\"pages\":\"gigabyte129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221353/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Multicellular, IVT-derived, unmodified human transcriptome for nanopore-direct RNA analysis.
Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically-derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analyses. We produced DRS datasets using modification-free transcripts from in vitro transcription of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analyses of human transcripts.