通过单光子响应解卷积强调来自锗酸铋的切伦科夫光子

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-22 DOI:10.1109/TRPMS.2024.3403959
Ryosuke Ota;Kibo Ote
{"title":"通过单光子响应解卷积强调来自锗酸铋的切伦科夫光子","authors":"Ryosuke Ota;Kibo Ote","doi":"10.1109/TRPMS.2024.3403959","DOIUrl":null,"url":null,"abstract":"Bismuth germanate (BGO) has been receiving attention again because it is a potential scintillator for future time-of-flight positron emission tomography. Owing to its optical properties, BGO emits a relatively large number of Cherenkov photons after 511-keV gamma-ray interactions, which can enable good coincidence time resolution (CTR). Nonetheless, optimally exploiting the Cherenkov emissions can be confounded by scintillation emissions. Thus, we propose a method efficiently emphasizing Cherenkov photon from a detector waveform by deconvolving a single photon response of photodetector. As a proof-of-concept, we perform the deconvolution, and a probability density function (PDF) of BGO was obtained, which is compared to a conventional time correlated single photon counting (TCSPC) method. Furthermore, we investigate if the proposed deconvolution can emphasize a faint Cherenkov signal. Consequently, the PDF obtained by the proposed deconvolution shows a good agreement with that obtained using a conventional TCSPC methods. A CTR obtained using the proposed deconvolution is improved by 12% and 43% in full width at half maximum compared to a voltage-based leading edge discriminator for with and without high-frequency readout electronics, respectively. Thus, the proposed deconvolution method can efficiently emphasize Cherenkov photon by lowering the threshold level and improve the timing performance of BGO-based detectors.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"595-606"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emphasizing Cherenkov Photons From Bismuth Germanate by Single Photon Response Deconvolution\",\"authors\":\"Ryosuke Ota;Kibo Ote\",\"doi\":\"10.1109/TRPMS.2024.3403959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bismuth germanate (BGO) has been receiving attention again because it is a potential scintillator for future time-of-flight positron emission tomography. Owing to its optical properties, BGO emits a relatively large number of Cherenkov photons after 511-keV gamma-ray interactions, which can enable good coincidence time resolution (CTR). Nonetheless, optimally exploiting the Cherenkov emissions can be confounded by scintillation emissions. Thus, we propose a method efficiently emphasizing Cherenkov photon from a detector waveform by deconvolving a single photon response of photodetector. As a proof-of-concept, we perform the deconvolution, and a probability density function (PDF) of BGO was obtained, which is compared to a conventional time correlated single photon counting (TCSPC) method. Furthermore, we investigate if the proposed deconvolution can emphasize a faint Cherenkov signal. Consequently, the PDF obtained by the proposed deconvolution shows a good agreement with that obtained using a conventional TCSPC methods. A CTR obtained using the proposed deconvolution is improved by 12% and 43% in full width at half maximum compared to a voltage-based leading edge discriminator for with and without high-frequency readout electronics, respectively. Thus, the proposed deconvolution method can efficiently emphasize Cherenkov photon by lowering the threshold level and improve the timing performance of BGO-based detectors.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"8 6\",\"pages\":\"595-606\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10537043/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10537043/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

锗酸铋(BGO)再次受到关注,因为它是未来飞行时间正电子发射断层扫描的潜在闪烁体。由于其光学特性,锗酸铋在与 511-keV 伽马射线相互作用后会发出相对较多的切伦科夫光子,从而实现良好的重合时间分辨率(CTR)。然而,最佳利用切伦科夫发射可能会受到闪烁发射的干扰。因此,我们提出了一种方法,通过对光电探测器的单光子响应进行解卷积,从探测器波形中有效地强调切伦科夫光子。作为概念验证,我们进行了解卷积,得到了 BGO 的概率密度函数(PDF),并与传统的时间相关单光子计数(TCSPC)方法进行了比较。此外,我们还研究了拟议的解卷积是否能突出微弱的切伦科夫信号。结果表明,拟议解卷积得到的 PDF 与传统 TCSPC 方法得到的 PDF 非常吻合。与基于电压的前沿鉴别器相比,在有高频读出电子设备和无高频读出电子设备的情况下,利用拟议解卷积法获得的 CTR 在半最大全宽方面分别提高了 12% 和 43%。因此,建议的解卷积方法可以通过降低阈值水平有效地强调切伦科夫光子,并改善基于 BGO 的探测器的计时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emphasizing Cherenkov Photons From Bismuth Germanate by Single Photon Response Deconvolution
Bismuth germanate (BGO) has been receiving attention again because it is a potential scintillator for future time-of-flight positron emission tomography. Owing to its optical properties, BGO emits a relatively large number of Cherenkov photons after 511-keV gamma-ray interactions, which can enable good coincidence time resolution (CTR). Nonetheless, optimally exploiting the Cherenkov emissions can be confounded by scintillation emissions. Thus, we propose a method efficiently emphasizing Cherenkov photon from a detector waveform by deconvolving a single photon response of photodetector. As a proof-of-concept, we perform the deconvolution, and a probability density function (PDF) of BGO was obtained, which is compared to a conventional time correlated single photon counting (TCSPC) method. Furthermore, we investigate if the proposed deconvolution can emphasize a faint Cherenkov signal. Consequently, the PDF obtained by the proposed deconvolution shows a good agreement with that obtained using a conventional TCSPC methods. A CTR obtained using the proposed deconvolution is improved by 12% and 43% in full width at half maximum compared to a voltage-based leading edge discriminator for with and without high-frequency readout electronics, respectively. Thus, the proposed deconvolution method can efficiently emphasize Cherenkov photon by lowering the threshold level and improve the timing performance of BGO-based detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Three-Gamma Imaging in Nuclear Medicine: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1