微波焙烧与传统焙烧在从多金属黑页岩中浸出稀土元素、钒、镍和锂方面的比较

IF 1.6 4区 材料科学 Q2 Materials Science Transactions of The Indian Institute of Metals Pub Date : 2024-06-22 DOI:10.1007/s12666-024-03373-1
Ashwin Kumar Kamalesh, Irina V. Chernyshova, Vladislav Slabov, Stefanie Lode, Roy Eccles, Sathish Ponnurangam
{"title":"微波焙烧与传统焙烧在从多金属黑页岩中浸出稀土元素、钒、镍和锂方面的比较","authors":"Ashwin Kumar Kamalesh, Irina V. Chernyshova, Vladislav Slabov, Stefanie Lode, Roy Eccles, Sathish Ponnurangam","doi":"10.1007/s12666-024-03373-1","DOIUrl":null,"url":null,"abstract":"<p>Polymetallic black shale from the Buckton deposit in Alberta, Canada, is an undeveloped resource for V, rare earth elements (REEs), Ni, Li, and a few other metals. In this work, the valuable elements are extracted from the shale using a low-temperature sulfation roasting-water leaching method. Sulfation roasting enables the destruction of mineral phases releasing V ions as well as REEs, Li and Ni. We compare microwave and conventional roasting under varying temperature, sulfuric acid dosage, and time, followed by water leaching, to determine the optimum leaching efficiencies of metals. Microwave roasting consumes less energy than conventional roasting for similar release % of metals in laboratory-scale as well as scaled-up process (5 times larger) with a significant reduction in roasting temperature (by 40 °C) and time (by 30 min). A maximum leaching efficiency of 100% of gadolinium, 85% of ytterbium, 84% of Ce, 76% of Ni, 74% of V, 59% of Li, 34% of neodymium, 21% of yttrium, and 13% of La was achieved. We have identified the host minerals of several of the valuable elements using detailed mineralogical analyses which can be useful in formulating more efficient metal release strategies.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Microwave and Conventional Roasting in the Leaching of Rare Earth Elements, V, Ni, and Li from Polymetallic Black Shale\",\"authors\":\"Ashwin Kumar Kamalesh, Irina V. Chernyshova, Vladislav Slabov, Stefanie Lode, Roy Eccles, Sathish Ponnurangam\",\"doi\":\"10.1007/s12666-024-03373-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polymetallic black shale from the Buckton deposit in Alberta, Canada, is an undeveloped resource for V, rare earth elements (REEs), Ni, Li, and a few other metals. In this work, the valuable elements are extracted from the shale using a low-temperature sulfation roasting-water leaching method. Sulfation roasting enables the destruction of mineral phases releasing V ions as well as REEs, Li and Ni. We compare microwave and conventional roasting under varying temperature, sulfuric acid dosage, and time, followed by water leaching, to determine the optimum leaching efficiencies of metals. Microwave roasting consumes less energy than conventional roasting for similar release % of metals in laboratory-scale as well as scaled-up process (5 times larger) with a significant reduction in roasting temperature (by 40 °C) and time (by 30 min). A maximum leaching efficiency of 100% of gadolinium, 85% of ytterbium, 84% of Ce, 76% of Ni, 74% of V, 59% of Li, 34% of neodymium, 21% of yttrium, and 13% of La was achieved. We have identified the host minerals of several of the valuable elements using detailed mineralogical analyses which can be useful in formulating more efficient metal release strategies.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03373-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03373-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

加拿大阿尔伯塔省巴克顿矿床的多金属黑色页岩是一种尚未开发的钒元素、稀土元素 (REE)、镍、锂和其他一些金属的资源。在这项工作中,采用低温硫化焙烧-水浸法从页岩中提取有价值的元素。硫化焙烧能够破坏矿物相,释放出 V 离子以及 REEs、锂和镍。我们比较了不同温度、硫酸用量和时间下的微波焙烧和传统焙烧,然后进行水浸出,以确定金属的最佳浸出效率。在实验室规模和扩大规模(5 倍)的工艺中,微波焙烧比传统焙烧消耗更少的能量,但金属释放率相似,焙烧温度(40 °C)和时间(30 分钟)显著降低。钆的最大沥滤效率为 100%,镱的最大沥滤效率为 85%,铈的最大沥滤效率为 84%,镍的最大沥滤效率为 76%,钒的最大沥滤效率为 74%,锂的最大沥滤效率为 59%,钕的最大沥滤效率为 34%,钇的最大沥滤效率为 21%,镧的最大沥滤效率为 13%。通过详细的矿物学分析,我们确定了几种有价值元素的主矿物,这有助于制定更有效的金属释放策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Microwave and Conventional Roasting in the Leaching of Rare Earth Elements, V, Ni, and Li from Polymetallic Black Shale

Polymetallic black shale from the Buckton deposit in Alberta, Canada, is an undeveloped resource for V, rare earth elements (REEs), Ni, Li, and a few other metals. In this work, the valuable elements are extracted from the shale using a low-temperature sulfation roasting-water leaching method. Sulfation roasting enables the destruction of mineral phases releasing V ions as well as REEs, Li and Ni. We compare microwave and conventional roasting under varying temperature, sulfuric acid dosage, and time, followed by water leaching, to determine the optimum leaching efficiencies of metals. Microwave roasting consumes less energy than conventional roasting for similar release % of metals in laboratory-scale as well as scaled-up process (5 times larger) with a significant reduction in roasting temperature (by 40 °C) and time (by 30 min). A maximum leaching efficiency of 100% of gadolinium, 85% of ytterbium, 84% of Ce, 76% of Ni, 74% of V, 59% of Li, 34% of neodymium, 21% of yttrium, and 13% of La was achieved. We have identified the host minerals of several of the valuable elements using detailed mineralogical analyses which can be useful in formulating more efficient metal release strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of The Indian Institute of Metals
Transactions of The Indian Institute of Metals Materials Science-Metals and Alloys
CiteScore
2.60
自引率
6.20%
发文量
3
期刊介绍: Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering. Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.
期刊最新文献
Effect of Impact Energy on the Interface Microstructure of Explosively Clad Mild Steel and Titanium Surface Characteristics of Low Plasticity Burnished Laser Directed Energy Deposition Alloy IN718 Enhancement of Elastic Modulus by TiC Reinforcement in Low-Density Steel Microstructure Evolution and Mechanical Properties of NiAl-TiB2 Nanocomposite Produced by Heat Treatment Post Mechanical Alloying Effect of Boron and its Influence on Mechanically Alloyed FeCo Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1