飞机起落架诊断和健康管理的进展--进步、挑战和未来可能性

IF 5.3 3区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Precision Engineering and Manufacturing-Green Technology Pub Date : 2024-07-02 DOI:10.1007/s40684-024-00646-4
Izaz Raouf, Prashant Kumar, Yubin Cheon, Mohad Tanveer, Soo-Ho Jo, Heung Soo Kim
{"title":"飞机起落架诊断和健康管理的进展--进步、挑战和未来可能性","authors":"Izaz Raouf, Prashant Kumar, Yubin Cheon, Mohad Tanveer, Soo-Ho Jo, Heung Soo Kim","doi":"10.1007/s40684-024-00646-4","DOIUrl":null,"url":null,"abstract":"<p>Prognostics and health management (PHM) has developed into a crucial discipline because of its never-ending pursuit of safety, effectiveness, and dependability. The aircraft Landing gear (LG) is one of the most significant components during takeoff and landing. Consequently, the PHM of LG is essential for the aircraft to operate safely and reliably. This paper provides an in-depth exploration of the developments, difficulties, and prospects in PHM for aircraft LG. The study begins by providing an overview of the LG parts and related faults, emphasizing their importance for the flight safety. The insights of PHM are presented based on various artificial intelligence (AI) techniques. Various approaches are discussed for fault detection and isolation (FDI) and remaining useful life (RUL). These efforts help to improve the maintenance and decision-making (MDM) process, which improves the overall effectiveness of PHM. With the aim of giving researchers a useful resource, this review addresses to fill the research gaps based on the available literature so far. It lays the foundations for future advancements by highlighting the challenges in this field.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"61 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Prognostics and Health Management for Aircraft Landing Gear—Progress, Challenges, and Future Possibilities\",\"authors\":\"Izaz Raouf, Prashant Kumar, Yubin Cheon, Mohad Tanveer, Soo-Ho Jo, Heung Soo Kim\",\"doi\":\"10.1007/s40684-024-00646-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prognostics and health management (PHM) has developed into a crucial discipline because of its never-ending pursuit of safety, effectiveness, and dependability. The aircraft Landing gear (LG) is one of the most significant components during takeoff and landing. Consequently, the PHM of LG is essential for the aircraft to operate safely and reliably. This paper provides an in-depth exploration of the developments, difficulties, and prospects in PHM for aircraft LG. The study begins by providing an overview of the LG parts and related faults, emphasizing their importance for the flight safety. The insights of PHM are presented based on various artificial intelligence (AI) techniques. Various approaches are discussed for fault detection and isolation (FDI) and remaining useful life (RUL). These efforts help to improve the maintenance and decision-making (MDM) process, which improves the overall effectiveness of PHM. With the aim of giving researchers a useful resource, this review addresses to fill the research gaps based on the available literature so far. It lays the foundations for future advancements by highlighting the challenges in this field.</p>\",\"PeriodicalId\":14238,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40684-024-00646-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-024-00646-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

由于对安全性、有效性和可靠性的不懈追求,诊断与健康管理(PHM)已发展成为一门至关重要的学科。飞机起落架(LG)是飞机起飞和着陆时最重要的部件之一。因此,LG 的 PHM 对于飞机安全可靠地运行至关重要。本文深入探讨了飞机 LG PHM 的发展、困难和前景。研究首先概述了 LG 部件和相关故障,强调了它们对飞行安全的重要性。基于各种人工智能(AI)技术,介绍了 PHM 的见解。讨论了故障检测和隔离 (FDI) 以及剩余使用寿命 (RUL) 的各种方法。这些工作有助于改进维护和决策 (MDM) 流程,从而提高 PHM 的整体有效性。为了给研究人员提供有用的资源,本综述在现有文献的基础上填补了研究空白。它通过强调该领域的挑战,为未来的进步奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Prognostics and Health Management for Aircraft Landing Gear—Progress, Challenges, and Future Possibilities

Prognostics and health management (PHM) has developed into a crucial discipline because of its never-ending pursuit of safety, effectiveness, and dependability. The aircraft Landing gear (LG) is one of the most significant components during takeoff and landing. Consequently, the PHM of LG is essential for the aircraft to operate safely and reliably. This paper provides an in-depth exploration of the developments, difficulties, and prospects in PHM for aircraft LG. The study begins by providing an overview of the LG parts and related faults, emphasizing their importance for the flight safety. The insights of PHM are presented based on various artificial intelligence (AI) techniques. Various approaches are discussed for fault detection and isolation (FDI) and remaining useful life (RUL). These efforts help to improve the maintenance and decision-making (MDM) process, which improves the overall effectiveness of PHM. With the aim of giving researchers a useful resource, this review addresses to fill the research gaps based on the available literature so far. It lays the foundations for future advancements by highlighting the challenges in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.50%
发文量
65
审稿时长
5.3 months
期刊介绍: Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.
期刊最新文献
Online Vibration Detection in High-Speed Robotic Milling Process Based on Wavelet Energy Entropy of Acoustic Emission The Abrasion Robotic Solutions: A review Integration of Cu-Doped TiO2 Nanoparticles on High Surface UV-Laser-Induced Graphene for Enhanced Photodegradation, De-icing, and Anti-bacterial Surface Applications Flux Filling Rate Effect on Weld Bead Deposition of Recycled Titanium Chip Tubular Wire Bipolar Current Collectors of Carbon Fiber Reinforced Polymer for Laminates of Structural Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1