利用融合了 UGI 降解标签的目标 AID 系统编辑链霉菌基因组

IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Engineering in Life Sciences Pub Date : 2024-06-24 DOI:10.1002/elsc.202400005
Pamella Apriliana, Prihardi Kahar, Norimasa Kashiwagi, Akihiko Kondo, Chiaki Ogino
{"title":"利用融合了 UGI 降解标签的目标 AID 系统编辑链霉菌基因组","authors":"Pamella Apriliana,&nbsp;Prihardi Kahar,&nbsp;Norimasa Kashiwagi,&nbsp;Akihiko Kondo,&nbsp;Chiaki Ogino","doi":"10.1002/elsc.202400005","DOIUrl":null,"url":null,"abstract":"<p>The utilization of <i>Streptomyces</i> as a microbial chassis for developing innovative drugs and medicinal compounds showcases its capability to produce bioactive natural substances. Recent focus on the clustered regularly interspaced short palindromic repeat (CRISPR) technology highlights its potential in genome editing. However, applying CRISPR technology in certain microbial strains, particularly <i>Streptomyces</i>, encounters specific challenges. These challenges include achieving efficient gene expression and maintaining genetic stability, which are critical for successful genome editing. To overcome these obstacles, an innovative approach has been developed that combines several key elements: activation-induced cytidine deaminase (AID), nuclease-deficient cas9 variants (dCas9), and Petromyzon marinus cytidine deaminase 1 (PmCDA1). In this study, this novel strategy was employed to engineer a <i>Streptomyces coelicolor</i> strain. The target gene was actVA-ORF4 (SCO5079), which is involved in actinorhodin production. The engineering process involved introducing a specific construct [pGM1190-dcas9-pmCDA-UGI-AAV-actVA-ORF4 (SCO5079)] to create a CrA10 mutant strain. The resulting CrA10 mutant strain did not produce actinorhodin. This outcome highlights the potential of this combined approach in the genetic manipulation of <i>Streptomyces</i>. The failure of the CrA10 mutant to produce actinorhodin conclusively demonstrates the success of gene editing at the targeted site, affirming the effectiveness of this method for precise genetic modifications in <i>Streptomyces</i>.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202400005","citationCount":"0","resultStr":"{\"title\":\"Editing Streptomyces genome using target AID system fused with UGI-degradation tag\",\"authors\":\"Pamella Apriliana,&nbsp;Prihardi Kahar,&nbsp;Norimasa Kashiwagi,&nbsp;Akihiko Kondo,&nbsp;Chiaki Ogino\",\"doi\":\"10.1002/elsc.202400005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The utilization of <i>Streptomyces</i> as a microbial chassis for developing innovative drugs and medicinal compounds showcases its capability to produce bioactive natural substances. Recent focus on the clustered regularly interspaced short palindromic repeat (CRISPR) technology highlights its potential in genome editing. However, applying CRISPR technology in certain microbial strains, particularly <i>Streptomyces</i>, encounters specific challenges. These challenges include achieving efficient gene expression and maintaining genetic stability, which are critical for successful genome editing. To overcome these obstacles, an innovative approach has been developed that combines several key elements: activation-induced cytidine deaminase (AID), nuclease-deficient cas9 variants (dCas9), and Petromyzon marinus cytidine deaminase 1 (PmCDA1). In this study, this novel strategy was employed to engineer a <i>Streptomyces coelicolor</i> strain. The target gene was actVA-ORF4 (SCO5079), which is involved in actinorhodin production. The engineering process involved introducing a specific construct [pGM1190-dcas9-pmCDA-UGI-AAV-actVA-ORF4 (SCO5079)] to create a CrA10 mutant strain. The resulting CrA10 mutant strain did not produce actinorhodin. This outcome highlights the potential of this combined approach in the genetic manipulation of <i>Streptomyces</i>. The failure of the CrA10 mutant to produce actinorhodin conclusively demonstrates the success of gene editing at the targeted site, affirming the effectiveness of this method for precise genetic modifications in <i>Streptomyces</i>.</p>\",\"PeriodicalId\":11678,\"journal\":{\"name\":\"Engineering in Life Sciences\",\"volume\":\"24 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202400005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Life Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202400005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202400005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用链霉菌作为开发创新药物和药用化合物的微生物底盘,展示了其生产生物活性天然物质的能力。最近对成簇规律性间隔短回文重复(CRISPR)技术的关注凸显了其在基因组编辑方面的潜力。然而,在某些微生物菌株(尤其是链霉菌)中应用 CRISPR 技术会遇到一些特定的挑战。这些挑战包括实现高效的基因表达和保持遗传稳定性,这对成功进行基因组编辑至关重要。为了克服这些障碍,我们开发了一种创新方法,该方法结合了几个关键要素:活化诱导胞苷脱氨酶(AID)、核酸酶缺陷cas9变体(dCas9)和Petromyzon marinus胞苷脱氨酶1(PmCDA1)。在本研究中,我们采用了这一新策略来改造一种链霉菌(Streptomyces coelicolor)菌株。目标基因是 actVA-ORF4 (SCO5079),它参与放线菌素的生产。工程过程包括引入一个特定的构建体[pGM1190-dcas9-pmCDA-UGI-AAV-actVA-ORF4 (SCO5079)]来创建一个 CrA10 突变菌株。产生的 CrA10 突变株不产生放线菌素。这一结果凸显了这种组合方法在链霉菌遗传操作方面的潜力。CrA10 突变体未能产生放线菌素,这最终证明在目标位点的基因编辑是成功的,从而肯定了这种方法在链霉菌中进行精确基因修饰的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Editing Streptomyces genome using target AID system fused with UGI-degradation tag

The utilization of Streptomyces as a microbial chassis for developing innovative drugs and medicinal compounds showcases its capability to produce bioactive natural substances. Recent focus on the clustered regularly interspaced short palindromic repeat (CRISPR) technology highlights its potential in genome editing. However, applying CRISPR technology in certain microbial strains, particularly Streptomyces, encounters specific challenges. These challenges include achieving efficient gene expression and maintaining genetic stability, which are critical for successful genome editing. To overcome these obstacles, an innovative approach has been developed that combines several key elements: activation-induced cytidine deaminase (AID), nuclease-deficient cas9 variants (dCas9), and Petromyzon marinus cytidine deaminase 1 (PmCDA1). In this study, this novel strategy was employed to engineer a Streptomyces coelicolor strain. The target gene was actVA-ORF4 (SCO5079), which is involved in actinorhodin production. The engineering process involved introducing a specific construct [pGM1190-dcas9-pmCDA-UGI-AAV-actVA-ORF4 (SCO5079)] to create a CrA10 mutant strain. The resulting CrA10 mutant strain did not produce actinorhodin. This outcome highlights the potential of this combined approach in the genetic manipulation of Streptomyces. The failure of the CrA10 mutant to produce actinorhodin conclusively demonstrates the success of gene editing at the targeted site, affirming the effectiveness of this method for precise genetic modifications in Streptomyces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
期刊最新文献
Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering. A Consecutive Genome Engineering Method Reveals a New Phenotype and Regulation of Glucose and Glycerol Utilization in Clostridium Pasteurianum. Investigating Ultrafiltration Membranes and Operation Modes for Improved Lentiviral Vector Processing. Issue Information Cover Picture: Engineering in Life Sciences 12'24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1