双面系数达 99.1%的半透明有机太阳能电池

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Materials Today Energy Pub Date : 2024-05-28 DOI:10.1016/j.mtener.2024.101614
Xiangda Liu, Xiujun Liu, Zezhou Xia, Yitong Ji, Dongyang Zhang, Yingying Cheng, Xiaotong Liu, Jun Yuan, Xueyuan Yang, Wenchao Huang
{"title":"双面系数达 99.1%的半透明有机太阳能电池","authors":"Xiangda Liu, Xiujun Liu, Zezhou Xia, Yitong Ji, Dongyang Zhang, Yingying Cheng, Xiaotong Liu, Jun Yuan, Xueyuan Yang, Wenchao Huang","doi":"10.1016/j.mtener.2024.101614","DOIUrl":null,"url":null,"abstract":"Semitransparent organic solar cells (ST-OSCs) based on silver nanowires (AgNWs) top electrodes have attracted significant interest due to their high transmittance and high electrical conductivity characteristics and showed great potential in the field of building integrated photovoltaics (BIPVs). However, the deposition of AgNWs will partially damage the underlying electron transport layer, leading to poor interfacial performance. Thus, the efficiency of ST-OSCs based on AgNWs still lags behind those based on ultrathin metal electrodes. This work develops a bilayer electron transport layer combining zinc oxide nanoparticles (ZnO) and PDINN to improve the interface between the active layer and the top electrode. The best-performing semitransparent device achieves a remarkable 12.5% power conversion efficiency with an average visible light transmittance of 22.9%. By adjusting the acceptor-to-donor ratio and concentration of the active layer, the ST-OSC can achieve the highest light utilization efficiency of 4.0% with a power conversion efficiency of 9.5%. Furthermore, by further optimizing the top electrode and active layer, a bifacial factor of 99.1% is achieved for the ST-OSCs, which is the highest reported bifacial factor so far. This work provides a promising pathway to develop high-efficiency ST-OSCs for the application of building integrated photovoltaics.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semitransparent organic solar cell with a bifacial factor of 99.1%\",\"authors\":\"Xiangda Liu, Xiujun Liu, Zezhou Xia, Yitong Ji, Dongyang Zhang, Yingying Cheng, Xiaotong Liu, Jun Yuan, Xueyuan Yang, Wenchao Huang\",\"doi\":\"10.1016/j.mtener.2024.101614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semitransparent organic solar cells (ST-OSCs) based on silver nanowires (AgNWs) top electrodes have attracted significant interest due to their high transmittance and high electrical conductivity characteristics and showed great potential in the field of building integrated photovoltaics (BIPVs). However, the deposition of AgNWs will partially damage the underlying electron transport layer, leading to poor interfacial performance. Thus, the efficiency of ST-OSCs based on AgNWs still lags behind those based on ultrathin metal electrodes. This work develops a bilayer electron transport layer combining zinc oxide nanoparticles (ZnO) and PDINN to improve the interface between the active layer and the top electrode. The best-performing semitransparent device achieves a remarkable 12.5% power conversion efficiency with an average visible light transmittance of 22.9%. By adjusting the acceptor-to-donor ratio and concentration of the active layer, the ST-OSC can achieve the highest light utilization efficiency of 4.0% with a power conversion efficiency of 9.5%. Furthermore, by further optimizing the top electrode and active layer, a bifacial factor of 99.1% is achieved for the ST-OSCs, which is the highest reported bifacial factor so far. This work provides a promising pathway to develop high-efficiency ST-OSCs for the application of building integrated photovoltaics.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101614\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101614","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于银纳米线(AgNWs)顶电极的半透明有机太阳能电池(ST-OSCs)因其高透光率和高导电率特性而备受关注,并在光伏建筑一体化(BIPVs)领域展现出巨大潜力。然而,AgNWs 的沉积会部分损坏底层电子传输层,导致界面性能不佳。因此,基于 AgNWs 的 ST-OSCs 的效率仍然落后于基于超薄金属电极的 ST-OSCs。这项研究开发了一种结合氧化锌纳米颗粒(ZnO)和 PDINN 的双层电子传输层,以改善活性层和顶层电极之间的界面。性能最佳的半透明器件实现了 12.5% 的显著功率转换效率和 22.9% 的平均可见光透射率。通过调整有源层的受体-供体比和浓度,ST-OSC 可以达到最高的光利用效率 4.0%,功率转换效率达到 9.5%。此外,通过进一步优化顶部电极和活性层,ST-OSC 的双面因子达到了 99.1%,这是迄今为止报道的最高双面因子。这项工作为开发高效 ST-OSC 应用于光伏建筑一体化提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semitransparent organic solar cell with a bifacial factor of 99.1%
Semitransparent organic solar cells (ST-OSCs) based on silver nanowires (AgNWs) top electrodes have attracted significant interest due to their high transmittance and high electrical conductivity characteristics and showed great potential in the field of building integrated photovoltaics (BIPVs). However, the deposition of AgNWs will partially damage the underlying electron transport layer, leading to poor interfacial performance. Thus, the efficiency of ST-OSCs based on AgNWs still lags behind those based on ultrathin metal electrodes. This work develops a bilayer electron transport layer combining zinc oxide nanoparticles (ZnO) and PDINN to improve the interface between the active layer and the top electrode. The best-performing semitransparent device achieves a remarkable 12.5% power conversion efficiency with an average visible light transmittance of 22.9%. By adjusting the acceptor-to-donor ratio and concentration of the active layer, the ST-OSC can achieve the highest light utilization efficiency of 4.0% with a power conversion efficiency of 9.5%. Furthermore, by further optimizing the top electrode and active layer, a bifacial factor of 99.1% is achieved for the ST-OSCs, which is the highest reported bifacial factor so far. This work provides a promising pathway to develop high-efficiency ST-OSCs for the application of building integrated photovoltaics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
期刊最新文献
Magnetic field-augmented photoelectrochemical water splitting in Co3O4 and NiO nanorod arrays Evolution from passive to active components in lithium metal and lithium-ion batteries separators Prolonging rechargeable aluminum batteries life with flexible ceramic separator Efficient hole transport layers for silicon heterojunction solar cells by surface plasmonic modification in MoOx/Au NPs/MoOx stacks Self-powered sensors utilizing single-pillar thermocells with pyrolytic graphite sheet electrodes: harvesting body heat and solar thermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1