{"title":"基于变形一维纳米金属光子晶体的温度传感器","authors":"O. Nasri, J. Zaghdoudi, M. Kanzari","doi":"10.1134/S1063783423600292","DOIUrl":null,"url":null,"abstract":"<p>The theoretical investigation of the temperature dependence in hybrid one-dimensional photonic crystals with a metal defect involved simultaneously considering thermal expansion effect and thermal-optical effect. Firstly, we study the effect of the number of iterations in the H(LH)<sup><i>N</i></sup>H(LH)<sup><i>N</i></sup> and H(LH)<sup><i>N</i></sup>SH(LH)<sup><i>N</i></sup> systems, where H (GaAs) and L (Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub> “BGO”) are two different materials with constant refractive index <i>n</i>H (<i>n</i><sub>GaAs</sub> = 3.3) and <i>n</i>L (<i>n</i><sub>BGO</sub> = 2.31), respectively. S is a metal chosen as the Ag. The presence of metal S enhances noticeably the sensitivity for the temperature. It has been shown that when N increases the transmission peak λ<sub>peak</sub> shifts to higher wavelengths for the structure H(LH)<sup><i>N</i></sup>H(LH)<sup><i>N</i></sup>. We show that the proposed device H(LH)<sup><i>N</i></sup>SH(LH)<sup><i>N</i></sup> can be used as a temperature sensor. Indeed, the sensitivity changes from the value 4.5 pm K<sup>–1</sup> in the absence of the metal layer to the value 17 pm K<sup>–1</sup> in its presence. Enhancing the sensitivity of the H (LH)<sup><i>N</i></sup>SH(LH)<sup><i>N</i></sup> component, we proceeded to a deformation of the system by the application of a law of the type <i>y</i> = <i>x</i><sup>1 +</sup> <sup><i>k</i></sup>, where <i>y</i> denotes the deformation coordinate of the structure H(LH)<sup><i>N</i></sup>SH(LH)<sup><i>N</i></sup> and <i>x</i> the coordinate before deformation. The degree of deformation is defined by the coefficient <i>k</i>. The value of <i>N</i> is chosen equal to 4. This value corresponds to the minimum of layers of the system leading to its satisfactory performance. We show in this case that the sensitivity increases by increasing the positive value of <i>k</i>.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 4","pages":"104 - 112"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Sensor Based on Deformed One-Dimensional Nanometallic Photonic Crystals\",\"authors\":\"O. Nasri, J. Zaghdoudi, M. Kanzari\",\"doi\":\"10.1134/S1063783423600292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The theoretical investigation of the temperature dependence in hybrid one-dimensional photonic crystals with a metal defect involved simultaneously considering thermal expansion effect and thermal-optical effect. Firstly, we study the effect of the number of iterations in the H(LH)<sup><i>N</i></sup>H(LH)<sup><i>N</i></sup> and H(LH)<sup><i>N</i></sup>SH(LH)<sup><i>N</i></sup> systems, where H (GaAs) and L (Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub> “BGO”) are two different materials with constant refractive index <i>n</i>H (<i>n</i><sub>GaAs</sub> = 3.3) and <i>n</i>L (<i>n</i><sub>BGO</sub> = 2.31), respectively. S is a metal chosen as the Ag. The presence of metal S enhances noticeably the sensitivity for the temperature. It has been shown that when N increases the transmission peak λ<sub>peak</sub> shifts to higher wavelengths for the structure H(LH)<sup><i>N</i></sup>H(LH)<sup><i>N</i></sup>. We show that the proposed device H(LH)<sup><i>N</i></sup>SH(LH)<sup><i>N</i></sup> can be used as a temperature sensor. Indeed, the sensitivity changes from the value 4.5 pm K<sup>–1</sup> in the absence of the metal layer to the value 17 pm K<sup>–1</sup> in its presence. Enhancing the sensitivity of the H (LH)<sup><i>N</i></sup>SH(LH)<sup><i>N</i></sup> component, we proceeded to a deformation of the system by the application of a law of the type <i>y</i> = <i>x</i><sup>1 +</sup> <sup><i>k</i></sup>, where <i>y</i> denotes the deformation coordinate of the structure H(LH)<sup><i>N</i></sup>SH(LH)<sup><i>N</i></sup> and <i>x</i> the coordinate before deformation. The degree of deformation is defined by the coefficient <i>k</i>. The value of <i>N</i> is chosen equal to 4. This value corresponds to the minimum of layers of the system leading to its satisfactory performance. We show in this case that the sensitivity increases by increasing the positive value of <i>k</i>.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"66 4\",\"pages\":\"104 - 112\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783423600292\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783423600292","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
摘要 对带有金属缺陷的混合一维光子晶体的温度依赖性进行理论研究,需要同时考虑热膨胀效应和热光效应。首先,我们研究了 H(LH)NH(LH)N 和 H(LH)NSH(LH)N 系统中迭代次数的影响,其中 H(砷化镓)和 L(Bi4Ge3O12 "BGO")分别是折射率 nH(nGaAs = 3.3)和 nL(nBGO = 2.31)恒定的两种不同材料。S 是一种金属,被选为 Ag。金属 S 的存在明显提高了对温度的敏感度。研究表明,当 N 增加时,H(LH)NH(LH)N 结构的透射峰 λpeak 会向更高波长移动。我们的研究表明,所提出的器件 H(LH)NSH(LH)N 可用作温度传感器。事实上,灵敏度从没有金属层时的 4.5 pm K-1 变为有金属层时的 17 pm K-1。为了提高 H (LH)NSH(LH)N 元件的灵敏度,我们应用 y = x1 + k 的定律对系统进行变形,其中 y 表示 H(LH)NSH(LH)N 结构的变形坐标,x 表示变形前的坐标。变形程度由系数 k 定义。N 的值选择为 4,该值对应于系统的最小层数,因此系统性能令人满意。在这种情况下,我们可以看到,K 的正值越大,灵敏度越高。
Temperature Sensor Based on Deformed One-Dimensional Nanometallic Photonic Crystals
The theoretical investigation of the temperature dependence in hybrid one-dimensional photonic crystals with a metal defect involved simultaneously considering thermal expansion effect and thermal-optical effect. Firstly, we study the effect of the number of iterations in the H(LH)NH(LH)N and H(LH)NSH(LH)N systems, where H (GaAs) and L (Bi4Ge3O12 “BGO”) are two different materials with constant refractive index nH (nGaAs = 3.3) and nL (nBGO = 2.31), respectively. S is a metal chosen as the Ag. The presence of metal S enhances noticeably the sensitivity for the temperature. It has been shown that when N increases the transmission peak λpeak shifts to higher wavelengths for the structure H(LH)NH(LH)N. We show that the proposed device H(LH)NSH(LH)N can be used as a temperature sensor. Indeed, the sensitivity changes from the value 4.5 pm K–1 in the absence of the metal layer to the value 17 pm K–1 in its presence. Enhancing the sensitivity of the H (LH)NSH(LH)N component, we proceeded to a deformation of the system by the application of a law of the type y = x1 +k, where y denotes the deformation coordinate of the structure H(LH)NSH(LH)N and x the coordinate before deformation. The degree of deformation is defined by the coefficient k. The value of N is chosen equal to 4. This value corresponds to the minimum of layers of the system leading to its satisfactory performance. We show in this case that the sensitivity increases by increasing the positive value of k.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.