{"title":"类似 MoSi2N4 晶体的七层二维材料新家族","authors":"T. Latychevskaia, D. A. Bandurin, K. S. Novoselov","doi":"10.1038/s42254-024-00728-x","DOIUrl":null,"url":null,"abstract":"Recently synthesized MoSi2N4 is the first septuple-layer two-dimensional material, which does not naturally occur as a layered crystal, and has been obtained with chemical vapour deposition growth. It can be considered as MoN2 crystal (with a crystal structure of MoS2) intercalating Si2N2 two-dimensional layer (with the structure similar to InSe). The discovery of this material has spurred on research into its electronic properties, and also to the prediction and classification of dozens of other members of the family. Whereas the originally synthesized MoSi2N4 is a semiconductor, some of the members of the family are also metallic, some are magnetic, some showing remarkable properties, such as very high room-temperature electron mobilities. The major interest towards these materials is coming from the septuple-layer structure, which allows not only multiple crystal phases but also complex compositions, in particular those with broken mirror-reflection symmetry against the layer of metal atoms. In this Review, we provide a profile of this new family of materials and discuss the possibilities they open up towards new physics and applications. A new class of septuple-layer 2D materials has been identified, with the first two members already synthesized: MoSi2N4 and WSi2N4. The possible variation of compositions and crystal structures make the new family of 2D materials very versatile and extremely attractive for research and applications.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":null,"pages":null},"PeriodicalIF":44.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new family of septuple-layer 2D materials of MoSi2N4-like crystals\",\"authors\":\"T. Latychevskaia, D. A. Bandurin, K. S. Novoselov\",\"doi\":\"10.1038/s42254-024-00728-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently synthesized MoSi2N4 is the first septuple-layer two-dimensional material, which does not naturally occur as a layered crystal, and has been obtained with chemical vapour deposition growth. It can be considered as MoN2 crystal (with a crystal structure of MoS2) intercalating Si2N2 two-dimensional layer (with the structure similar to InSe). The discovery of this material has spurred on research into its electronic properties, and also to the prediction and classification of dozens of other members of the family. Whereas the originally synthesized MoSi2N4 is a semiconductor, some of the members of the family are also metallic, some are magnetic, some showing remarkable properties, such as very high room-temperature electron mobilities. The major interest towards these materials is coming from the septuple-layer structure, which allows not only multiple crystal phases but also complex compositions, in particular those with broken mirror-reflection symmetry against the layer of metal atoms. In this Review, we provide a profile of this new family of materials and discuss the possibilities they open up towards new physics and applications. A new class of septuple-layer 2D materials has been identified, with the first two members already synthesized: MoSi2N4 and WSi2N4. The possible variation of compositions and crystal structures make the new family of 2D materials very versatile and extremely attractive for research and applications.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.8000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-024-00728-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-024-00728-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
A new family of septuple-layer 2D materials of MoSi2N4-like crystals
Recently synthesized MoSi2N4 is the first septuple-layer two-dimensional material, which does not naturally occur as a layered crystal, and has been obtained with chemical vapour deposition growth. It can be considered as MoN2 crystal (with a crystal structure of MoS2) intercalating Si2N2 two-dimensional layer (with the structure similar to InSe). The discovery of this material has spurred on research into its electronic properties, and also to the prediction and classification of dozens of other members of the family. Whereas the originally synthesized MoSi2N4 is a semiconductor, some of the members of the family are also metallic, some are magnetic, some showing remarkable properties, such as very high room-temperature electron mobilities. The major interest towards these materials is coming from the septuple-layer structure, which allows not only multiple crystal phases but also complex compositions, in particular those with broken mirror-reflection symmetry against the layer of metal atoms. In this Review, we provide a profile of this new family of materials and discuss the possibilities they open up towards new physics and applications. A new class of septuple-layer 2D materials has been identified, with the first two members already synthesized: MoSi2N4 and WSi2N4. The possible variation of compositions and crystal structures make the new family of 2D materials very versatile and extremely attractive for research and applications.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.