高架起重机系统的安全关键干扰抑制控制:方法与实验验证

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Control Systems Technology Pub Date : 2024-06-25 DOI:10.1109/TCST.2024.3416416
Zheng Tian;Xinming Wang;Jun Yang;Shihua Li;Dan Niu;Qi Li
{"title":"高架起重机系统的安全关键干扰抑制控制:方法与实验验证","authors":"Zheng Tian;Xinming Wang;Jun Yang;Shihua Li;Dan Niu;Qi Li","doi":"10.1109/TCST.2024.3416416","DOIUrl":null,"url":null,"abstract":"Crane systems generally operate in challenging environments (e.g., harsh weather conditions and high-altitude work), which heightens the requirements of control systems for the safety and disturbances rejection. However, underactuated nature poses difficulties in achieving the efficient positioning and swing elimination under these factors. To this end, we propose a method using a quadratic program (QP) formulation that combines an enhanced-coupling control Lyapunov function (ECCLF) with a new composite state control barrier function (CSCBF). Additionally, disturbance observers (DOBs) are employed to handle matched and unmatched disturbances effectively. The ECCLF introduces a new coupled control variable, where its tracking error ultimately exhibits an exponential convergence, elegantly overcoming the inability of full-state feedback linearization in underactuated systems. The CSCBF imposes time-varying safety constraints on the unilateral swing distance (USD), ensuring swing safety and meeting industrial payload positioning accuracy requirements. Especially, the traditional control barrier function (CBF) approach is not applicable for the proposed problem due to the infeasibility when the control coefficient of the CBF tends to zero, which is addressed by the proposed CSCBF approach. The safety of the CSCBF and the effectiveness of the controller synthesis are rigorously proven. Experimental validation demonstrates the effectiveness, safety, and disturbance rejection performance under practical working conditions.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2253-2266"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety-Critical Disturbance Rejection Control of Overhead Crane Systems: Methods and Experimental Validation\",\"authors\":\"Zheng Tian;Xinming Wang;Jun Yang;Shihua Li;Dan Niu;Qi Li\",\"doi\":\"10.1109/TCST.2024.3416416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crane systems generally operate in challenging environments (e.g., harsh weather conditions and high-altitude work), which heightens the requirements of control systems for the safety and disturbances rejection. However, underactuated nature poses difficulties in achieving the efficient positioning and swing elimination under these factors. To this end, we propose a method using a quadratic program (QP) formulation that combines an enhanced-coupling control Lyapunov function (ECCLF) with a new composite state control barrier function (CSCBF). Additionally, disturbance observers (DOBs) are employed to handle matched and unmatched disturbances effectively. The ECCLF introduces a new coupled control variable, where its tracking error ultimately exhibits an exponential convergence, elegantly overcoming the inability of full-state feedback linearization in underactuated systems. The CSCBF imposes time-varying safety constraints on the unilateral swing distance (USD), ensuring swing safety and meeting industrial payload positioning accuracy requirements. Especially, the traditional control barrier function (CBF) approach is not applicable for the proposed problem due to the infeasibility when the control coefficient of the CBF tends to zero, which is addressed by the proposed CSCBF approach. The safety of the CSCBF and the effectiveness of the controller synthesis are rigorously proven. Experimental validation demonstrates the effectiveness, safety, and disturbance rejection performance under practical working conditions.\",\"PeriodicalId\":13103,\"journal\":{\"name\":\"IEEE Transactions on Control Systems Technology\",\"volume\":\"32 6\",\"pages\":\"2253-2266\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Control Systems Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10571380/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10571380/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

起重机系统通常在具有挑战性的环境中工作(如恶劣的天气条件和高空作业),这就对控制系统的安全性和抗干扰性提出了更高的要求。然而,在这些因素的影响下,欠驱动特性给实现有效定位和消除摆动带来了困难。为此,我们提出了一种使用二次方程序(QP)表述的方法,该方法结合了增强耦合控制李亚普诺夫函数(ECCLF)和新的复合状态控制障碍函数(CSCBF)。此外,还采用了扰动观测器 (DOB) 来有效处理匹配和非匹配扰动。ECCLF 引入了一个新的耦合控制变量,其跟踪误差最终呈现指数收敛性,很好地克服了欠激励系统中全态反馈线性化的不足。CSCBF 对单边摆动距离(USD)施加时变安全约束,确保摆动安全,满足工业有效载荷定位精度要求。特别是,传统的控制障碍函数(CBF)方法由于当 CBF 的控制系数趋于零时的不可行性而不适用于所提出的问题,而所提出的 CSCBF 方法解决了这一问题。CSCBF 的安全性和控制器合成的有效性得到了严格证明。实验验证证明了该方法在实际工作条件下的有效性、安全性和干扰抑制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safety-Critical Disturbance Rejection Control of Overhead Crane Systems: Methods and Experimental Validation
Crane systems generally operate in challenging environments (e.g., harsh weather conditions and high-altitude work), which heightens the requirements of control systems for the safety and disturbances rejection. However, underactuated nature poses difficulties in achieving the efficient positioning and swing elimination under these factors. To this end, we propose a method using a quadratic program (QP) formulation that combines an enhanced-coupling control Lyapunov function (ECCLF) with a new composite state control barrier function (CSCBF). Additionally, disturbance observers (DOBs) are employed to handle matched and unmatched disturbances effectively. The ECCLF introduces a new coupled control variable, where its tracking error ultimately exhibits an exponential convergence, elegantly overcoming the inability of full-state feedback linearization in underactuated systems. The CSCBF imposes time-varying safety constraints on the unilateral swing distance (USD), ensuring swing safety and meeting industrial payload positioning accuracy requirements. Especially, the traditional control barrier function (CBF) approach is not applicable for the proposed problem due to the infeasibility when the control coefficient of the CBF tends to zero, which is addressed by the proposed CSCBF approach. The safety of the CSCBF and the effectiveness of the controller synthesis are rigorously proven. Experimental validation demonstrates the effectiveness, safety, and disturbance rejection performance under practical working conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
期刊最新文献
2023-2024 Index IEEE Transactions on Control Systems Technology Vol. 32 Table of Contents Predictive Control for Autonomous Driving With Uncertain, Multimodal Predictions High-Speed Interception Multicopter Control by Image-Based Visual Servoing Real-Time Mixed-Integer Quadratic Programming for Vehicle Decision-Making and Motion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1