Arka Chatterjee, Sadie Brasel, Autumn Bruncz, Wenjing Wu, Shengxi Huang
{"title":"过氧化物量子发射的进展与前景","authors":"Arka Chatterjee, Sadie Brasel, Autumn Bruncz, Wenjing Wu, Shengxi Huang","doi":"10.1557/s43579-024-00597-6","DOIUrl":null,"url":null,"abstract":"<p>Quantum emissions, such as single photon emission (SPE) and superradiance (SR), are fundamental ingredients of quantum optical technology. The quest for efficient, controllable, and scalable quantum emitters is crucial for successfully implementing various quantum technologies, such as quantum computing, secure quantum communication and high-precision metrology. Recently, perovskite quantum dots (PQDs) have emerged as highly efficient sources of quantum emission due to their excellent optical properties, including near 100% quantum yield, high optical absorbance, and tunable bandgaps covering the entire visible range. This Prospective introduces the principles of quantum emissions, including SPE and SR, and summarizes recent progress in exploring quantum emissions in PQDs. We focus on the prospects, advantages, and challenges associated with the quantum emissions from PQDs. This Prospective concludes with an outlook on PQDs in advancing future quantum technologies.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"53 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress and prospects of quantum emission from perovskites\",\"authors\":\"Arka Chatterjee, Sadie Brasel, Autumn Bruncz, Wenjing Wu, Shengxi Huang\",\"doi\":\"10.1557/s43579-024-00597-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum emissions, such as single photon emission (SPE) and superradiance (SR), are fundamental ingredients of quantum optical technology. The quest for efficient, controllable, and scalable quantum emitters is crucial for successfully implementing various quantum technologies, such as quantum computing, secure quantum communication and high-precision metrology. Recently, perovskite quantum dots (PQDs) have emerged as highly efficient sources of quantum emission due to their excellent optical properties, including near 100% quantum yield, high optical absorbance, and tunable bandgaps covering the entire visible range. This Prospective introduces the principles of quantum emissions, including SPE and SR, and summarizes recent progress in exploring quantum emissions in PQDs. We focus on the prospects, advantages, and challenges associated with the quantum emissions from PQDs. This Prospective concludes with an outlook on PQDs in advancing future quantum technologies.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00597-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00597-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Progress and prospects of quantum emission from perovskites
Quantum emissions, such as single photon emission (SPE) and superradiance (SR), are fundamental ingredients of quantum optical technology. The quest for efficient, controllable, and scalable quantum emitters is crucial for successfully implementing various quantum technologies, such as quantum computing, secure quantum communication and high-precision metrology. Recently, perovskite quantum dots (PQDs) have emerged as highly efficient sources of quantum emission due to their excellent optical properties, including near 100% quantum yield, high optical absorbance, and tunable bandgaps covering the entire visible range. This Prospective introduces the principles of quantum emissions, including SPE and SR, and summarizes recent progress in exploring quantum emissions in PQDs. We focus on the prospects, advantages, and challenges associated with the quantum emissions from PQDs. This Prospective concludes with an outlook on PQDs in advancing future quantum technologies.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.