{"title":"利用激光扫描点云生成的变形形状约束进行有限元分析","authors":"Hibiya Haraki, Yasunori Yusa, Hiroshi Masuda","doi":"10.1002/nme.7555","DOIUrl":null,"url":null,"abstract":"<p>This article proposes a computational method for finite element analysis with deformed shape constraints for analyzing constructed structures to account for deformations that occur before shape measurement by a terrestrial laser scanner (TLS). In this method, point clouds obtained by a TLS are considered as a partial surface of the deformed structure. An analysis model is assumed to be created from CAD data or drawings. The analysis is performed under deformed shape constraints, namely, the deformed surface constraints or the normal vector constraints, which are generated by the point clouds. These constraints are introduced to reproduce the current displacements and stresses for the structure through the analysis. This method was applied to analyses of a plate and a desk using point clouds, which were created virtually on a computer or obtained by a TLS in the numerical examples. The results showed that this method can consider unexpected deformations that occur before laser scanning. Although the computed stresses oscillated when the scanned point cloud was used due to measurement errors and conventional point cloud processing methods, the stress values were responsive enough to indicate unnatural shapes of the deformed structure. Moreover, the oscillation was observed only in areas with constraints, whereas it was not seen in areas without constraints.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7555","citationCount":"0","resultStr":"{\"title\":\"Finite element analysis with deformed shape constraints generated by laser-scanned point clouds\",\"authors\":\"Hibiya Haraki, Yasunori Yusa, Hiroshi Masuda\",\"doi\":\"10.1002/nme.7555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article proposes a computational method for finite element analysis with deformed shape constraints for analyzing constructed structures to account for deformations that occur before shape measurement by a terrestrial laser scanner (TLS). In this method, point clouds obtained by a TLS are considered as a partial surface of the deformed structure. An analysis model is assumed to be created from CAD data or drawings. The analysis is performed under deformed shape constraints, namely, the deformed surface constraints or the normal vector constraints, which are generated by the point clouds. These constraints are introduced to reproduce the current displacements and stresses for the structure through the analysis. This method was applied to analyses of a plate and a desk using point clouds, which were created virtually on a computer or obtained by a TLS in the numerical examples. The results showed that this method can consider unexpected deformations that occur before laser scanning. Although the computed stresses oscillated when the scanned point cloud was used due to measurement errors and conventional point cloud processing methods, the stress values were responsive enough to indicate unnatural shapes of the deformed structure. Moreover, the oscillation was observed only in areas with constraints, whereas it was not seen in areas without constraints.</p>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7555\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7555\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7555","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Finite element analysis with deformed shape constraints generated by laser-scanned point clouds
This article proposes a computational method for finite element analysis with deformed shape constraints for analyzing constructed structures to account for deformations that occur before shape measurement by a terrestrial laser scanner (TLS). In this method, point clouds obtained by a TLS are considered as a partial surface of the deformed structure. An analysis model is assumed to be created from CAD data or drawings. The analysis is performed under deformed shape constraints, namely, the deformed surface constraints or the normal vector constraints, which are generated by the point clouds. These constraints are introduced to reproduce the current displacements and stresses for the structure through the analysis. This method was applied to analyses of a plate and a desk using point clouds, which were created virtually on a computer or obtained by a TLS in the numerical examples. The results showed that this method can consider unexpected deformations that occur before laser scanning. Although the computed stresses oscillated when the scanned point cloud was used due to measurement errors and conventional point cloud processing methods, the stress values were responsive enough to indicate unnatural shapes of the deformed structure. Moreover, the oscillation was observed only in areas with constraints, whereas it was not seen in areas without constraints.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.