{"title":"印度夏季季风降水在再现环全球网模式中占主导地位:CMIP5 和 CMIP6 模型的比较","authors":"Hanzhao Yu, Tianjun Zhou, Linqiang He","doi":"10.1175/jcli-d-23-0644.1","DOIUrl":null,"url":null,"abstract":"Abstract The zonal wavenumber-5 circumglobal teleconnection pattern (CGT) is one of the most critical atmospheric teleconnection patterns during boreal summer over the Northern Hemisphere (NH). CGT can exert significant climatic impact across NH including Europe, East Asia and North America but how reliable coupled climate models simulate the characteristics of CGT is poorly understood. Here, twenty coupled models with their respective versions in Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6 are selected to evaluate their performance on CGT simulation. We find that while both CMIP5 and CMIP6 models are able to capture the basic features of CGT in multi-model mean (MMM), there are large inter-model discrepancies in the simulation of CGT pattern among CMIP5 and CMIP6 models. High-skill models exhibit strong action center over west-central Asia, coinciding with the pattern derived from reanalysis, while the corresponding action center in low-skill models are weaker. Further analyses demonstrate that high-skill models are capable of simulating more realistic Indian Summer Monsoon (ISM) precipitation anomalies related to CGT. The resultant anomalous upper-tropospheric divergence over west-central Asia, acting as a Rossby wave source, can therefore excite the above-mentioned action center. This high- and low-skill model difference on CGT-ISM relationship is consistent in both CMIP5 and CMIP6. It is also found that high-skill models tend to simulate more realistic CGT-ENSO relationship. The relationship between simulation skills of CGT-ENSO correlation and CGT spatial pattern is attributed to the remote impact of ENSO on CGT wavetrain through affecting ISM precipitation anomalies.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"27 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indian summer monsoon precipitation dominates the reproduction of Circumglobal teleconnection pattern: A comparison of CMIP5 and CMIP6 models\",\"authors\":\"Hanzhao Yu, Tianjun Zhou, Linqiang He\",\"doi\":\"10.1175/jcli-d-23-0644.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The zonal wavenumber-5 circumglobal teleconnection pattern (CGT) is one of the most critical atmospheric teleconnection patterns during boreal summer over the Northern Hemisphere (NH). CGT can exert significant climatic impact across NH including Europe, East Asia and North America but how reliable coupled climate models simulate the characteristics of CGT is poorly understood. Here, twenty coupled models with their respective versions in Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6 are selected to evaluate their performance on CGT simulation. We find that while both CMIP5 and CMIP6 models are able to capture the basic features of CGT in multi-model mean (MMM), there are large inter-model discrepancies in the simulation of CGT pattern among CMIP5 and CMIP6 models. High-skill models exhibit strong action center over west-central Asia, coinciding with the pattern derived from reanalysis, while the corresponding action center in low-skill models are weaker. Further analyses demonstrate that high-skill models are capable of simulating more realistic Indian Summer Monsoon (ISM) precipitation anomalies related to CGT. The resultant anomalous upper-tropospheric divergence over west-central Asia, acting as a Rossby wave source, can therefore excite the above-mentioned action center. This high- and low-skill model difference on CGT-ISM relationship is consistent in both CMIP5 and CMIP6. It is also found that high-skill models tend to simulate more realistic CGT-ENSO relationship. The relationship between simulation skills of CGT-ENSO correlation and CGT spatial pattern is attributed to the remote impact of ENSO on CGT wavetrain through affecting ISM precipitation anomalies.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0644.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0644.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Indian summer monsoon precipitation dominates the reproduction of Circumglobal teleconnection pattern: A comparison of CMIP5 and CMIP6 models
Abstract The zonal wavenumber-5 circumglobal teleconnection pattern (CGT) is one of the most critical atmospheric teleconnection patterns during boreal summer over the Northern Hemisphere (NH). CGT can exert significant climatic impact across NH including Europe, East Asia and North America but how reliable coupled climate models simulate the characteristics of CGT is poorly understood. Here, twenty coupled models with their respective versions in Coupled Model Intercomparison Project Phase 5 (CMIP5) and CMIP6 are selected to evaluate their performance on CGT simulation. We find that while both CMIP5 and CMIP6 models are able to capture the basic features of CGT in multi-model mean (MMM), there are large inter-model discrepancies in the simulation of CGT pattern among CMIP5 and CMIP6 models. High-skill models exhibit strong action center over west-central Asia, coinciding with the pattern derived from reanalysis, while the corresponding action center in low-skill models are weaker. Further analyses demonstrate that high-skill models are capable of simulating more realistic Indian Summer Monsoon (ISM) precipitation anomalies related to CGT. The resultant anomalous upper-tropospheric divergence over west-central Asia, acting as a Rossby wave source, can therefore excite the above-mentioned action center. This high- and low-skill model difference on CGT-ISM relationship is consistent in both CMIP5 and CMIP6. It is also found that high-skill models tend to simulate more realistic CGT-ENSO relationship. The relationship between simulation skills of CGT-ENSO correlation and CGT spatial pattern is attributed to the remote impact of ENSO on CGT wavetrain through affecting ISM precipitation anomalies.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.