{"title":"跟踪时间序列数据中估计窗口的大小","authors":"Tae Yeon Kwon","doi":"10.1108/dta-11-2023-0797","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper introduces a novel method, Variance Rule-based Window Size Tracking (VR-WT), for deriving a sequence of estimation window sizes. This approach not only identifies structural change points but also ascertains the optimal size of the estimation window. VR-WT is designed to achieve accurate model estimation and is versatile enough to be applied across a range of models in various disciplines.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This paper proposes a new method named Variance Rule-based Window size Tracking (VR-WT), which derives a sequence of estimation window sizes. The concept of VR-WT is inspired by the Potential Scale Reduction Factor (PSRF), a tool used to evaluate the convergence and stationarity of MCMC.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Monte Carlo simulation study demonstrates that VR-WT accurately detects structural change points and select appropriate window sizes. The VR-WT is essential in applications where accurate estimation of model parameters and inference about their value, sign, and significance are critical. The VR-WT has also helped us understand shifts in parameter-based inference, ensuring stability across periods and highlighting how the timing and impact of market shocks vary across fields and datasets.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The first distinction of the VR-WT lies in its purpose and methodological differences. The VR-WT focuses on precise parameter estimation. By dynamically tracking window sizes, VR-WT selects flexible window sizes and enables the visualization of structural changes. The second distinction of VR-WT lies in its broad applicability and versatility. We conducted empirical applications across three fields of study: CAPM; interdependence analysis between global stock markets; and the study of time-dependent energy prices.</p><!--/ Abstract__block -->","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"82 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking the size of the estimation window in time-series data\",\"authors\":\"Tae Yeon Kwon\",\"doi\":\"10.1108/dta-11-2023-0797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper introduces a novel method, Variance Rule-based Window Size Tracking (VR-WT), for deriving a sequence of estimation window sizes. This approach not only identifies structural change points but also ascertains the optimal size of the estimation window. VR-WT is designed to achieve accurate model estimation and is versatile enough to be applied across a range of models in various disciplines.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This paper proposes a new method named Variance Rule-based Window size Tracking (VR-WT), which derives a sequence of estimation window sizes. The concept of VR-WT is inspired by the Potential Scale Reduction Factor (PSRF), a tool used to evaluate the convergence and stationarity of MCMC.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Monte Carlo simulation study demonstrates that VR-WT accurately detects structural change points and select appropriate window sizes. The VR-WT is essential in applications where accurate estimation of model parameters and inference about their value, sign, and significance are critical. The VR-WT has also helped us understand shifts in parameter-based inference, ensuring stability across periods and highlighting how the timing and impact of market shocks vary across fields and datasets.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The first distinction of the VR-WT lies in its purpose and methodological differences. The VR-WT focuses on precise parameter estimation. By dynamically tracking window sizes, VR-WT selects flexible window sizes and enables the visualization of structural changes. The second distinction of VR-WT lies in its broad applicability and versatility. We conducted empirical applications across three fields of study: CAPM; interdependence analysis between global stock markets; and the study of time-dependent energy prices.</p><!--/ Abstract__block -->\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-11-2023-0797\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-11-2023-0797","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Tracking the size of the estimation window in time-series data
Purpose
This paper introduces a novel method, Variance Rule-based Window Size Tracking (VR-WT), for deriving a sequence of estimation window sizes. This approach not only identifies structural change points but also ascertains the optimal size of the estimation window. VR-WT is designed to achieve accurate model estimation and is versatile enough to be applied across a range of models in various disciplines.
Design/methodology/approach
This paper proposes a new method named Variance Rule-based Window size Tracking (VR-WT), which derives a sequence of estimation window sizes. The concept of VR-WT is inspired by the Potential Scale Reduction Factor (PSRF), a tool used to evaluate the convergence and stationarity of MCMC.
Findings
Monte Carlo simulation study demonstrates that VR-WT accurately detects structural change points and select appropriate window sizes. The VR-WT is essential in applications where accurate estimation of model parameters and inference about their value, sign, and significance are critical. The VR-WT has also helped us understand shifts in parameter-based inference, ensuring stability across periods and highlighting how the timing and impact of market shocks vary across fields and datasets.
Originality/value
The first distinction of the VR-WT lies in its purpose and methodological differences. The VR-WT focuses on precise parameter estimation. By dynamically tracking window sizes, VR-WT selects flexible window sizes and enables the visualization of structural changes. The second distinction of VR-WT lies in its broad applicability and versatility. We conducted empirical applications across three fields of study: CAPM; interdependence analysis between global stock markets; and the study of time-dependent energy prices.