基于冲击波消除的可变几何高超声速进气口的设计和气动特性

Guangwei Wu, Ziao Wang, Fuxu Quan, Juntao Chang
{"title":"基于冲击波消除的可变几何高超声速进气口的设计和气动特性","authors":"Guangwei Wu, Ziao Wang, Fuxu Quan, Juntao Chang","doi":"10.1177/09544100241263896","DOIUrl":null,"url":null,"abstract":"To solve the problem that the control of shock wave elimination is weakened under off-design conditions, the design concept of a variable-geometry inlet scheme that combines the variable-geometry cowl (translating and diagonalizing) with regulating shock wave elimination is introduced in this paper. The variable-geometry inlet is designed by the theories of oblique shock wave and isentropic wave as well as the Oswatitsch theory. Regulatory law of the variable-geometry cowl based on shock wave elimination is obtained by the geometric relationships between cowl compression angle, cowl shock wave angle, and optimal control point or range. Numerical simulations are conducted to investigate flow field characteristics, control mechanism, and working performance of the inlet. Results reveal that expansion waves have a significant impact on the cowl shock wave and boundary layer interaction, and flow separation. Furthermore, variable-geometry inlet with translating and diagonalizing cowl based on the regulation of shock wave elimination effectively controls and even completely eliminates the flow separation. In terms of inlet performance, the total pressure loss of the variable-geometry inlet decreases such that the total pressure recovery coefficients of the translating cowl and diagonalizing cowl inlets are increased by maximum values of 3.39 % and 9.97 %, respectively. However, the mass flow coefficient of translating cowl inlet decreases, whereas that of the diagonalizing cowl inlet is equivalent to that of the fixed-geometry inlet. The working range can be widened by changing the internal contract ratio of the inlet through translating or diagonalizing the cowl. The results confirm that the scheme of variable geometry inlet with diagonalizing cowl is practicable and reliable and has important guiding significance and value for inlet design.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"82 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and aerodynamic characteristics of variable-geometry hypersonic inlet based on shock wave elimination\",\"authors\":\"Guangwei Wu, Ziao Wang, Fuxu Quan, Juntao Chang\",\"doi\":\"10.1177/09544100241263896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the problem that the control of shock wave elimination is weakened under off-design conditions, the design concept of a variable-geometry inlet scheme that combines the variable-geometry cowl (translating and diagonalizing) with regulating shock wave elimination is introduced in this paper. The variable-geometry inlet is designed by the theories of oblique shock wave and isentropic wave as well as the Oswatitsch theory. Regulatory law of the variable-geometry cowl based on shock wave elimination is obtained by the geometric relationships between cowl compression angle, cowl shock wave angle, and optimal control point or range. Numerical simulations are conducted to investigate flow field characteristics, control mechanism, and working performance of the inlet. Results reveal that expansion waves have a significant impact on the cowl shock wave and boundary layer interaction, and flow separation. Furthermore, variable-geometry inlet with translating and diagonalizing cowl based on the regulation of shock wave elimination effectively controls and even completely eliminates the flow separation. In terms of inlet performance, the total pressure loss of the variable-geometry inlet decreases such that the total pressure recovery coefficients of the translating cowl and diagonalizing cowl inlets are increased by maximum values of 3.39 % and 9.97 %, respectively. However, the mass flow coefficient of translating cowl inlet decreases, whereas that of the diagonalizing cowl inlet is equivalent to that of the fixed-geometry inlet. The working range can be widened by changing the internal contract ratio of the inlet through translating or diagonalizing the cowl. The results confirm that the scheme of variable geometry inlet with diagonalizing cowl is practicable and reliable and has important guiding significance and value for inlet design.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100241263896\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241263896","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

为了解决在非设计条件下减弱对冲击波消除控制的问题,本文提出了将可变几何整流罩(平移和对角)与调节冲击波消除相结合的可变几何进气道方案的设计理念。变几何进气道是根据斜冲击波和等熵波理论以及奥斯瓦蒂奇理论设计的。根据整流罩压缩角、整流罩冲击波角和最佳控制点或控制范围之间的几何关系,得到了基于冲击波消除的变几何整流罩调节规律。通过数值模拟研究了进气口的流场特征、控制机制和工作性能。结果表明,膨胀波对整流罩冲击波和边界层的相互作用以及流动分离有显著影响。此外,基于冲击波消除调节的可变几何进气道与平移对角化整流罩能有效控制甚至完全消除流动分离。在进气口性能方面,可变几何进气口的总压力损失减少,因此平移罩和对角化罩进气口的总压力恢复系数分别增加了 3.39% 和 9.97% 的最大值。然而,平移罩进气口的质量流量系数降低了,而对角化罩进气口的质量流量系数与固定几何形状进气口的质量流量系数相当。通过平移或对角化整流罩改变进气口的内部收缩比,可以扩大工作范围。研究结果表明,对角线化罩壳的可变几何进气道方案是切实可行和可靠的,对进气道设计具有重要的指导意义和价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and aerodynamic characteristics of variable-geometry hypersonic inlet based on shock wave elimination
To solve the problem that the control of shock wave elimination is weakened under off-design conditions, the design concept of a variable-geometry inlet scheme that combines the variable-geometry cowl (translating and diagonalizing) with regulating shock wave elimination is introduced in this paper. The variable-geometry inlet is designed by the theories of oblique shock wave and isentropic wave as well as the Oswatitsch theory. Regulatory law of the variable-geometry cowl based on shock wave elimination is obtained by the geometric relationships between cowl compression angle, cowl shock wave angle, and optimal control point or range. Numerical simulations are conducted to investigate flow field characteristics, control mechanism, and working performance of the inlet. Results reveal that expansion waves have a significant impact on the cowl shock wave and boundary layer interaction, and flow separation. Furthermore, variable-geometry inlet with translating and diagonalizing cowl based on the regulation of shock wave elimination effectively controls and even completely eliminates the flow separation. In terms of inlet performance, the total pressure loss of the variable-geometry inlet decreases such that the total pressure recovery coefficients of the translating cowl and diagonalizing cowl inlets are increased by maximum values of 3.39 % and 9.97 %, respectively. However, the mass flow coefficient of translating cowl inlet decreases, whereas that of the diagonalizing cowl inlet is equivalent to that of the fixed-geometry inlet. The working range can be widened by changing the internal contract ratio of the inlet through translating or diagonalizing the cowl. The results confirm that the scheme of variable geometry inlet with diagonalizing cowl is practicable and reliable and has important guiding significance and value for inlet design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
212
审稿时长
5.7 months
期刊介绍: The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience. "The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fatigue life analysis of a composite materials structure using allowable strain criteria Feasibility study of carbon-fiber reinforced polymer linerless pressure vessel tank Testability modeling of aeroengine and analysis optimization method based on improved correlation matrix Research on a backstepping flight control method improved by STFT in atmospheric disturbance applications Evaluating the effect of frigate hangar shape modifications on helicopter recovery using piloted flight simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1