通过现场测量锌酸盐浓度了解锌钝化的新见解

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-06-25 DOI:10.1002/batt.202400298
David Fuchs, Harry Hoster, Christoph Müller, Mandy Schaffeld, Falko Mahlendorf
{"title":"通过现场测量锌酸盐浓度了解锌钝化的新见解","authors":"David Fuchs, Harry Hoster, Christoph Müller, Mandy Schaffeld, Falko Mahlendorf","doi":"10.1002/batt.202400298","DOIUrl":null,"url":null,"abstract":"We present a detailed analysis of the behavior of a new zinc‐air flow cell. This system offers several unique insights into the zinc electrochemistry. Due to the constant slurry flow, concentration gradients are completely destroyed every few seconds and therefore negligible and it is possible to take samples from the anode without interrupting the discharge process. To clarify the underlying processes, the potential of the zinc electrode, the zincate concentration (by titration) and the zinc‐particles (by SEM) were analyzed. These measurements offer the unique opportunity to distinguish between thermodynamic and kinetic contributions to the cell voltage. We found, that in this system zinc passivation, is caused by a critical zincate concentration and the steep increase of the cell potential is a kinetic effect, caused by partial passivation. The key factor for passivation, which limits the capacity to 82 mAh gzinc‑1 or 41 mAh gslurry‑1, is the nucleation of ZnO before the critical zincate concentration is reached. This allows capacities of up to 420 mAh gzinc‑1 or 210 mAh gslurry‑1. These results are therefore not only essential for a further increase of the practical capacity of the system but also offer unique insights in the zinc electrochemistry.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"15 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Insights Into Zinc Passivation Through In‐Operando Measured Zincate Concentrations\",\"authors\":\"David Fuchs, Harry Hoster, Christoph Müller, Mandy Schaffeld, Falko Mahlendorf\",\"doi\":\"10.1002/batt.202400298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a detailed analysis of the behavior of a new zinc‐air flow cell. This system offers several unique insights into the zinc electrochemistry. Due to the constant slurry flow, concentration gradients are completely destroyed every few seconds and therefore negligible and it is possible to take samples from the anode without interrupting the discharge process. To clarify the underlying processes, the potential of the zinc electrode, the zincate concentration (by titration) and the zinc‐particles (by SEM) were analyzed. These measurements offer the unique opportunity to distinguish between thermodynamic and kinetic contributions to the cell voltage. We found, that in this system zinc passivation, is caused by a critical zincate concentration and the steep increase of the cell potential is a kinetic effect, caused by partial passivation. The key factor for passivation, which limits the capacity to 82 mAh gzinc‑1 or 41 mAh gslurry‑1, is the nucleation of ZnO before the critical zincate concentration is reached. This allows capacities of up to 420 mAh gzinc‑1 or 210 mAh gslurry‑1. These results are therefore not only essential for a further increase of the practical capacity of the system but also offer unique insights in the zinc electrochemistry.\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/batt.202400298\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400298","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

我们对新型锌-空气流动池的行为进行了详细分析。该系统为锌的电化学提供了一些独特的见解。由于浆液持续流动,浓度梯度每隔几秒钟就会被完全破坏,因此可以忽略不计,而且可以在不中断放电过程的情况下从阳极取样。为了弄清基本过程,我们对锌电极的电位、锌酸盐浓度(通过滴定法)和锌颗粒(通过扫描电镜)进行了分析。这些测量结果为区分电池电压的热力学贡献和动力学贡献提供了独特的机会。我们发现,在该系统中,锌钝化是由临界锌酸盐浓度引起的,而电池电位的急剧上升则是由部分钝化引起的动力学效应。将容量限制在 82 mAh gzinc-1 或 41 mAh gslurry-1 的钝化关键因素是在达到临界锌酸盐浓度之前氧化锌的成核。这使得电池容量可高达 420 mAh gzinc-1 或 210 mAh gslurry-1。因此,这些结果不仅对进一步提高系统的实际容量至关重要,而且还为锌电化学提供了独特的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Insights Into Zinc Passivation Through In‐Operando Measured Zincate Concentrations
We present a detailed analysis of the behavior of a new zinc‐air flow cell. This system offers several unique insights into the zinc electrochemistry. Due to the constant slurry flow, concentration gradients are completely destroyed every few seconds and therefore negligible and it is possible to take samples from the anode without interrupting the discharge process. To clarify the underlying processes, the potential of the zinc electrode, the zincate concentration (by titration) and the zinc‐particles (by SEM) were analyzed. These measurements offer the unique opportunity to distinguish between thermodynamic and kinetic contributions to the cell voltage. We found, that in this system zinc passivation, is caused by a critical zincate concentration and the steep increase of the cell potential is a kinetic effect, caused by partial passivation. The key factor for passivation, which limits the capacity to 82 mAh gzinc‑1 or 41 mAh gslurry‑1, is the nucleation of ZnO before the critical zincate concentration is reached. This allows capacities of up to 420 mAh gzinc‑1 or 210 mAh gslurry‑1. These results are therefore not only essential for a further increase of the practical capacity of the system but also offer unique insights in the zinc electrochemistry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024) Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024) Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024) Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024) Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1