{"title":"氧化锌对偏高岭土基土工聚合物防腐涂层性能的影响","authors":"Shixue Duan, Jiesheng Liu, Senlong Zhang, Xinyao Wu, Xuanyi Xiang, Xinke Li, Yinggui Wu, Yuansheng Wang","doi":"10.1007/s11998-024-00963-y","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, geopolymer coatings have been studied a lot due to their green and sustainable properties, and they have a great potential to partially replace traditional coatings in terms of corrosion resistance and economy. In this study, metakaolin-based geopolymer coating was used as the control group, and anticorrosive coatings were prepared by adding different dosages (2–8 wt%) of ZnO fillers to study the effect of ZnO on physical properties and anticorrosion properties of metakaolin-based geopolymer anticorrosive coatings. The results showed that when the mass fraction of the zinc oxide was 8%, it had the optimum effect on physical performance. The water absorption was 12.4%, and the toughness was 3 mm. In addition, the anticorrosive properties of the coating were studied by sodium chloride (NaCl) solution immersion test, wet–dry cyclic test, salt spray test, and electrochemical test. In sodium chloride (NaCl) solution immersion, wet–dry cycle, and salt spray test, a reduction of 43.8%, 50.6%, and 74.2% in corrosion area ratio, respectively, were achieved with a coating of 8% ZnO filled as compared with pure geopolymer coatings. The results indicated that the addition of ZnO enhanced the anticorrosion performance of the coating. The macroscopic test results were verified by SEM. This study lays a foundation for the subsequent research and performance improvement of metakaolin-based geopolymer anticorrosive coatings.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"2171 - 2181"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ZnO on properties of metakaolin-based geopolymer anticorrosive coating\",\"authors\":\"Shixue Duan, Jiesheng Liu, Senlong Zhang, Xinyao Wu, Xuanyi Xiang, Xinke Li, Yinggui Wu, Yuansheng Wang\",\"doi\":\"10.1007/s11998-024-00963-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, geopolymer coatings have been studied a lot due to their green and sustainable properties, and they have a great potential to partially replace traditional coatings in terms of corrosion resistance and economy. In this study, metakaolin-based geopolymer coating was used as the control group, and anticorrosive coatings were prepared by adding different dosages (2–8 wt%) of ZnO fillers to study the effect of ZnO on physical properties and anticorrosion properties of metakaolin-based geopolymer anticorrosive coatings. The results showed that when the mass fraction of the zinc oxide was 8%, it had the optimum effect on physical performance. The water absorption was 12.4%, and the toughness was 3 mm. In addition, the anticorrosive properties of the coating were studied by sodium chloride (NaCl) solution immersion test, wet–dry cyclic test, salt spray test, and electrochemical test. In sodium chloride (NaCl) solution immersion, wet–dry cycle, and salt spray test, a reduction of 43.8%, 50.6%, and 74.2% in corrosion area ratio, respectively, were achieved with a coating of 8% ZnO filled as compared with pure geopolymer coatings. The results indicated that the addition of ZnO enhanced the anticorrosion performance of the coating. The macroscopic test results were verified by SEM. This study lays a foundation for the subsequent research and performance improvement of metakaolin-based geopolymer anticorrosive coatings.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"21 6\",\"pages\":\"2171 - 2181\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-024-00963-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00963-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Effect of ZnO on properties of metakaolin-based geopolymer anticorrosive coating
Nowadays, geopolymer coatings have been studied a lot due to their green and sustainable properties, and they have a great potential to partially replace traditional coatings in terms of corrosion resistance and economy. In this study, metakaolin-based geopolymer coating was used as the control group, and anticorrosive coatings were prepared by adding different dosages (2–8 wt%) of ZnO fillers to study the effect of ZnO on physical properties and anticorrosion properties of metakaolin-based geopolymer anticorrosive coatings. The results showed that when the mass fraction of the zinc oxide was 8%, it had the optimum effect on physical performance. The water absorption was 12.4%, and the toughness was 3 mm. In addition, the anticorrosive properties of the coating were studied by sodium chloride (NaCl) solution immersion test, wet–dry cyclic test, salt spray test, and electrochemical test. In sodium chloride (NaCl) solution immersion, wet–dry cycle, and salt spray test, a reduction of 43.8%, 50.6%, and 74.2% in corrosion area ratio, respectively, were achieved with a coating of 8% ZnO filled as compared with pure geopolymer coatings. The results indicated that the addition of ZnO enhanced the anticorrosion performance of the coating. The macroscopic test results were verified by SEM. This study lays a foundation for the subsequent research and performance improvement of metakaolin-based geopolymer anticorrosive coatings.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.