Simin Dourandish, Henri Champliaud, Jean-Benoit Morin, Mohammad Jahazi
{"title":"大尺寸马氏体不锈钢锻件镦锻过程中显微组织演变的数值模拟和实验验证","authors":"Simin Dourandish, Henri Champliaud, Jean-Benoit Morin, Mohammad Jahazi","doi":"10.1007/s12289-024-01840-0","DOIUrl":null,"url":null,"abstract":"<div><p>The microstructure evolution, plastic deformation, and damage severity during the open die hot forging of a martensitic stainless steel were investigated using finite element (FE) simulation. A microstructure evolution model was developed and combined with a visco-elastoplastic model to predict the strain, the strain rate, and the temperature distribution, as well as the volume fraction and the size of dynamically recrystallized grains over the entire volume of an industrial size forging. The propensity to damage during hot forging was also evaluated using the Cockcroft & Latham model. The three models were implemented in the FE code and the results analyzed in terms of microstructure inhomogeneity and stress levels in different regions of the forging. A good agreement was obtained between the predicted and the experimental results, demonstrating that the simulation provided a realistic representation of the forging process at the industrial scale.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-024-01840-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and experimental validation of microstructure evolution during the upsetting process of a large size martensitic stainless steel forging\",\"authors\":\"Simin Dourandish, Henri Champliaud, Jean-Benoit Morin, Mohammad Jahazi\",\"doi\":\"10.1007/s12289-024-01840-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The microstructure evolution, plastic deformation, and damage severity during the open die hot forging of a martensitic stainless steel were investigated using finite element (FE) simulation. A microstructure evolution model was developed and combined with a visco-elastoplastic model to predict the strain, the strain rate, and the temperature distribution, as well as the volume fraction and the size of dynamically recrystallized grains over the entire volume of an industrial size forging. The propensity to damage during hot forging was also evaluated using the Cockcroft & Latham model. The three models were implemented in the FE code and the results analyzed in terms of microstructure inhomogeneity and stress levels in different regions of the forging. A good agreement was obtained between the predicted and the experimental results, demonstrating that the simulation provided a realistic representation of the forging process at the industrial scale.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-024-01840-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-024-01840-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01840-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Numerical simulation and experimental validation of microstructure evolution during the upsetting process of a large size martensitic stainless steel forging
The microstructure evolution, plastic deformation, and damage severity during the open die hot forging of a martensitic stainless steel were investigated using finite element (FE) simulation. A microstructure evolution model was developed and combined with a visco-elastoplastic model to predict the strain, the strain rate, and the temperature distribution, as well as the volume fraction and the size of dynamically recrystallized grains over the entire volume of an industrial size forging. The propensity to damage during hot forging was also evaluated using the Cockcroft & Latham model. The three models were implemented in the FE code and the results analyzed in terms of microstructure inhomogeneity and stress levels in different regions of the forging. A good agreement was obtained between the predicted and the experimental results, demonstrating that the simulation provided a realistic representation of the forging process at the industrial scale.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.