典型和非典型钢筋混凝土框架结构建筑的渐进式坍塌

IF 3.6 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Concrete Structures and Materials Pub Date : 2024-04-20 DOI:10.1186/s40069-024-00665-0
Solomon Abebe Derseh, Tesfaye Alemu Mohammed, Girum Urgessa
{"title":"典型和非典型钢筋混凝土框架结构建筑的渐进式坍塌","authors":"Solomon Abebe Derseh, Tesfaye Alemu Mohammed, Girum Urgessa","doi":"10.1186/s40069-024-00665-0","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the progressive collapse potential of eight-story reinforced concrete framed buildings with several atypical structural configurations and compares results with a typical structural configuration. The alternative load path mechanism, the linear-static analysis procedure amplified by dynamic increase factors, and the demand capacity ratio criterion limits from the U.S. General Services Administration guideline were used to evaluate the vulnerability of the different atypical and typical framed structures. Variations in bay size, plan irregularity, and closely spaced columns were used to represent the atypical structural configurations. The extracted demand-capacity ratio (DCR) of the global structural response showed that the demand-capacity ratio for the longitudinal frame with short-span beams had a larger DCR than the transverse frame with longer beam spans with significant potential for progressive collapse. Furthermore, atypical building configurations with closely spaced columns failed by shear and showed the highest DCR limits. In addition to the global structural response, the local member end actions were also evaluated. The evaluation showed that the critical atypical frame configuration with closely spaced columns had a 91% and 127% maximum shear force and support bending moment value difference, respectively, when compared to a baseline typical frame configuration.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"6 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Collapse of Typical and Atypical Reinforced Concrete Framed Buildings\",\"authors\":\"Solomon Abebe Derseh, Tesfaye Alemu Mohammed, Girum Urgessa\",\"doi\":\"10.1186/s40069-024-00665-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the progressive collapse potential of eight-story reinforced concrete framed buildings with several atypical structural configurations and compares results with a typical structural configuration. The alternative load path mechanism, the linear-static analysis procedure amplified by dynamic increase factors, and the demand capacity ratio criterion limits from the U.S. General Services Administration guideline were used to evaluate the vulnerability of the different atypical and typical framed structures. Variations in bay size, plan irregularity, and closely spaced columns were used to represent the atypical structural configurations. The extracted demand-capacity ratio (DCR) of the global structural response showed that the demand-capacity ratio for the longitudinal frame with short-span beams had a larger DCR than the transverse frame with longer beam spans with significant potential for progressive collapse. Furthermore, atypical building configurations with closely spaced columns failed by shear and showed the highest DCR limits. In addition to the global structural response, the local member end actions were also evaluated. The evaluation showed that the critical atypical frame configuration with closely spaced columns had a 91% and 127% maximum shear force and support bending moment value difference, respectively, when compared to a baseline typical frame configuration.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-024-00665-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-024-00665-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有几种非典型结构配置的八层钢筋混凝土框架建筑的渐进式倒塌潜力,并将结果与典型结构配置进行了比较。本文采用了替代荷载路径机制、通过动态增加系数放大的线性静态分析程序以及美国总务管理局指南中的需求容量比标准限制来评估不同的非典型和典型框架结构的脆弱性。不同的凹槽大小、平面不规则性和紧密间隔的柱子被用来代表非典型结构配置。提取的全局结构响应需求容量比(DCR)显示,短跨梁纵向框架的需求容量比大于长梁跨横向框架的需求容量比,具有显著的渐进式坍塌潜力。此外,柱间距较近的非典型建筑结构因受剪而倒塌,并显示出最高的 DCR 限值。除整体结构响应外,还对局部构件端部作用进行了评估。评估结果表明,与基线典型框架结构相比,柱间距较近的临界非典型框架结构的最大剪力和支撑弯矩值分别相差 91% 和 127%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive Collapse of Typical and Atypical Reinforced Concrete Framed Buildings

This paper investigates the progressive collapse potential of eight-story reinforced concrete framed buildings with several atypical structural configurations and compares results with a typical structural configuration. The alternative load path mechanism, the linear-static analysis procedure amplified by dynamic increase factors, and the demand capacity ratio criterion limits from the U.S. General Services Administration guideline were used to evaluate the vulnerability of the different atypical and typical framed structures. Variations in bay size, plan irregularity, and closely spaced columns were used to represent the atypical structural configurations. The extracted demand-capacity ratio (DCR) of the global structural response showed that the demand-capacity ratio for the longitudinal frame with short-span beams had a larger DCR than the transverse frame with longer beam spans with significant potential for progressive collapse. Furthermore, atypical building configurations with closely spaced columns failed by shear and showed the highest DCR limits. In addition to the global structural response, the local member end actions were also evaluated. The evaluation showed that the critical atypical frame configuration with closely spaced columns had a 91% and 127% maximum shear force and support bending moment value difference, respectively, when compared to a baseline typical frame configuration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Concrete Structures and Materials
International Journal of Concrete Structures and Materials CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
6.30
自引率
5.90%
发文量
61
审稿时长
13 weeks
期刊介绍: The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on Properties and performance of concrete and concrete structures Advanced and improved experimental techniques Latest modelling methods Possible improvement and enhancement of concrete properties Structural and microstructural characterization Concrete applications Fiber reinforced concrete technology Concrete waste management.
期刊最新文献
Experimental Investigation on Axial Strength Improvement of Cold-Formed Steel Jacketed Concrete Stub Columns Proposal of a Creep-Experiment Method and Superficial Creep Coefficient Model of CFT Considering a Stress-Redistribution Effect Impact of Rubber Content on Performance of Ultra-High-Performance Rubberised Concrete (UHPRuC) Study on the Diffusion Mechanism of Infiltration Grouting in Fault Fracture Zone Considering the Time-Varying Characteristics of Slurry Viscosity Under Seawater Environment Enhancing the Flexural Capacity of Deteriorated Low-Strength Prestressed Concrete Beam Using Near-Surface Mounted Post-Tensioned Carbon Fiber-Reinforced Polymer Bar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1