Josue O. Caro, Yilong Ju, Ryan Pyle, Sourav Dey, Wieland Brendel, Fabio Anselmi, Ankit B. Patel
{"title":"具有局部核的卷积中的平移对称性会导致对高频对抗性示例的隐含偏见","authors":"Josue O. Caro, Yilong Ju, Ryan Pyle, Sourav Dey, Wieland Brendel, Fabio Anselmi, Ankit B. Patel","doi":"10.3389/fncom.2024.1387077","DOIUrl":null,"url":null,"abstract":"Adversarial attacks are still a significant challenge for neural networks. Recent efforts have shown that adversarial perturbations typically contain high-frequency features, but the root cause of this phenomenon remains unknown. Inspired by theoretical work on linear convolutional models, we hypothesize that <jats:italic>translational symmetry in convolutional operations</jats:italic> together with <jats:italic>localized kernels implicitly bias the learning of high-frequency features</jats:italic>, and that this is one of the main causes of <jats:italic>high frequency adversarial examples</jats:italic>. To test this hypothesis, we analyzed the impact of different choices of linear and <jats:italic>non-linear</jats:italic> architectures on the implicit bias of the learned features and adversarial perturbations, in spatial and frequency domains. We find that, independently of the training dataset, convolutional operations have higher frequency adversarial attacks compared to other architectural parameterizations, and that this phenomenon is exacerbated with stronger locality of the kernel (kernel size) end depth of the model. The explanation for the kernel size dependence involves the Fourier Uncertainty Principle: a spatially-limited filter (local kernel in the space domain) cannot also be frequency-limited (local in the frequency domain). Using larger convolution kernel sizes or avoiding convolutions (e.g., by using Vision Transformers or MLP-style architectures) significantly reduces this high-frequency bias. Looking forward, our work strongly suggests that understanding and controlling the implicit bias of architectures will be essential for achieving adversarial robustness.","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translational symmetry in convolutions with localized kernels causes an implicit bias toward high frequency adversarial examples\",\"authors\":\"Josue O. Caro, Yilong Ju, Ryan Pyle, Sourav Dey, Wieland Brendel, Fabio Anselmi, Ankit B. Patel\",\"doi\":\"10.3389/fncom.2024.1387077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial attacks are still a significant challenge for neural networks. Recent efforts have shown that adversarial perturbations typically contain high-frequency features, but the root cause of this phenomenon remains unknown. Inspired by theoretical work on linear convolutional models, we hypothesize that <jats:italic>translational symmetry in convolutional operations</jats:italic> together with <jats:italic>localized kernels implicitly bias the learning of high-frequency features</jats:italic>, and that this is one of the main causes of <jats:italic>high frequency adversarial examples</jats:italic>. To test this hypothesis, we analyzed the impact of different choices of linear and <jats:italic>non-linear</jats:italic> architectures on the implicit bias of the learned features and adversarial perturbations, in spatial and frequency domains. We find that, independently of the training dataset, convolutional operations have higher frequency adversarial attacks compared to other architectural parameterizations, and that this phenomenon is exacerbated with stronger locality of the kernel (kernel size) end depth of the model. The explanation for the kernel size dependence involves the Fourier Uncertainty Principle: a spatially-limited filter (local kernel in the space domain) cannot also be frequency-limited (local in the frequency domain). Using larger convolution kernel sizes or avoiding convolutions (e.g., by using Vision Transformers or MLP-style architectures) significantly reduces this high-frequency bias. Looking forward, our work strongly suggests that understanding and controlling the implicit bias of architectures will be essential for achieving adversarial robustness.\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1387077\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1387077","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Translational symmetry in convolutions with localized kernels causes an implicit bias toward high frequency adversarial examples
Adversarial attacks are still a significant challenge for neural networks. Recent efforts have shown that adversarial perturbations typically contain high-frequency features, but the root cause of this phenomenon remains unknown. Inspired by theoretical work on linear convolutional models, we hypothesize that translational symmetry in convolutional operations together with localized kernels implicitly bias the learning of high-frequency features, and that this is one of the main causes of high frequency adversarial examples. To test this hypothesis, we analyzed the impact of different choices of linear and non-linear architectures on the implicit bias of the learned features and adversarial perturbations, in spatial and frequency domains. We find that, independently of the training dataset, convolutional operations have higher frequency adversarial attacks compared to other architectural parameterizations, and that this phenomenon is exacerbated with stronger locality of the kernel (kernel size) end depth of the model. The explanation for the kernel size dependence involves the Fourier Uncertainty Principle: a spatially-limited filter (local kernel in the space domain) cannot also be frequency-limited (local in the frequency domain). Using larger convolution kernel sizes or avoiding convolutions (e.g., by using Vision Transformers or MLP-style architectures) significantly reduces this high-frequency bias. Looking forward, our work strongly suggests that understanding and controlling the implicit bias of architectures will be essential for achieving adversarial robustness.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro