用于解释自主感知模型的全局映射-一致性约束视觉-语义嵌入技术

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2024-06-24 DOI:10.1109/OJITS.2024.3418552
Chi Zhang;Meng Yuan;Xiaoning Ma;Ping Wei;Yuanqi Su;Li Li;Yuehu Liu
{"title":"用于解释自主感知模型的全局映射-一致性约束视觉-语义嵌入技术","authors":"Chi Zhang;Meng Yuan;Xiaoning Ma;Ping Wei;Yuanqi Su;Li Li;Yuehu Liu","doi":"10.1109/OJITS.2024.3418552","DOIUrl":null,"url":null,"abstract":"From the perspective of artificial intelligence evaluation, the need to discover and explain the potential shortness of the evaluated intelligent algorithms/systems as well as the need to evaluate the intelligence level of such testees are of equal importance. In this paper, we propose a possible solution to these challenges: Explainable Evaluation for visual intelligence. Specifically, we focus on the problem setting where the internal mechanisms of AI algorithms are sophisticated, heterogeneous or unreachable. In this case, a latent attribute dictionary learning method with constrained by mapping consistency is proposed to explain the performance variation patterns of visual perception intelligence under different test samples. By jointly iteratively solving the learning of latent concept representation for test samples and the regression of latent concept-generalization performance, the mapping relationship between deep representation, semantic attribute annotation, and generalization performance of test samples is established to predict the degree of influence of semantic attributes on visual perception generalization performance. The optimal solution of proposed method could be reached via an alternating optimization process. Through quantitative experiments, we find that global mapping consistency constraints can make the learned latent concept representation strictly consistent with deep representation, thereby improving the accuracy of semantic attribute-perception performance correlation calculation.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"393-408"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10570287","citationCount":"0","resultStr":"{\"title\":\"Global-Mapping-Consistency-Constrained Visual-Semantic Embedding for Interpreting Autonomous Perception Models\",\"authors\":\"Chi Zhang;Meng Yuan;Xiaoning Ma;Ping Wei;Yuanqi Su;Li Li;Yuehu Liu\",\"doi\":\"10.1109/OJITS.2024.3418552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the perspective of artificial intelligence evaluation, the need to discover and explain the potential shortness of the evaluated intelligent algorithms/systems as well as the need to evaluate the intelligence level of such testees are of equal importance. In this paper, we propose a possible solution to these challenges: Explainable Evaluation for visual intelligence. Specifically, we focus on the problem setting where the internal mechanisms of AI algorithms are sophisticated, heterogeneous or unreachable. In this case, a latent attribute dictionary learning method with constrained by mapping consistency is proposed to explain the performance variation patterns of visual perception intelligence under different test samples. By jointly iteratively solving the learning of latent concept representation for test samples and the regression of latent concept-generalization performance, the mapping relationship between deep representation, semantic attribute annotation, and generalization performance of test samples is established to predict the degree of influence of semantic attributes on visual perception generalization performance. The optimal solution of proposed method could be reached via an alternating optimization process. Through quantitative experiments, we find that global mapping consistency constraints can make the learned latent concept representation strictly consistent with deep representation, thereby improving the accuracy of semantic attribute-perception performance correlation calculation.\",\"PeriodicalId\":100631,\"journal\":{\"name\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"volume\":\"5 \",\"pages\":\"393-408\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10570287\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10570287/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10570287/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

从人工智能评估的角度来看,发现和解释被评估的智能算法/系统的潜在不足以及评估这些被测试者的智能水平是同等重要的。在本文中,我们针对这些挑战提出了一种可能的解决方案:可解释的视觉智能评估。具体来说,我们将重点放在人工智能算法内部机制复杂、异构或不可触及的问题设置上。在这种情况下,我们提出了一种以映射一致性为约束的潜在属性字典学习方法,来解释视觉感知智能在不同测试样本下的性能变化规律。通过联合迭代求解测试样本的潜在概念表征学习和潜在概念-泛化性能回归,建立深度表征、语义属性标注和测试样本泛化性能之间的映射关系,预测语义属性对视知觉泛化性能的影响程度。通过交替优化过程,可以得到所提方法的最优解。通过定量实验,我们发现全局映射一致性约束可以使学习到的潜在概念表征与深层表征严格一致,从而提高语义属性与感知性能相关性计算的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global-Mapping-Consistency-Constrained Visual-Semantic Embedding for Interpreting Autonomous Perception Models
From the perspective of artificial intelligence evaluation, the need to discover and explain the potential shortness of the evaluated intelligent algorithms/systems as well as the need to evaluate the intelligence level of such testees are of equal importance. In this paper, we propose a possible solution to these challenges: Explainable Evaluation for visual intelligence. Specifically, we focus on the problem setting where the internal mechanisms of AI algorithms are sophisticated, heterogeneous or unreachable. In this case, a latent attribute dictionary learning method with constrained by mapping consistency is proposed to explain the performance variation patterns of visual perception intelligence under different test samples. By jointly iteratively solving the learning of latent concept representation for test samples and the regression of latent concept-generalization performance, the mapping relationship between deep representation, semantic attribute annotation, and generalization performance of test samples is established to predict the degree of influence of semantic attributes on visual perception generalization performance. The optimal solution of proposed method could be reached via an alternating optimization process. Through quantitative experiments, we find that global mapping consistency constraints can make the learned latent concept representation strictly consistent with deep representation, thereby improving the accuracy of semantic attribute-perception performance correlation calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Vehicle Egomotion Estimation Through IMU-RADAR Tight-Coupling An Adaptive Hierarchical Framework With Contrastive Aggregation for Traffic Sign Classification TruckSentry: Context Aware Intrusion Detection and Prevention System for J1939 Networks VI-BEV: Vehicle-Infrastructure Collaborative Perception for 3-D Object Detection on Bird’s-Eye View Beat the Morning Rush: Survival Analysis-Informed DNNs With Collaborative Filtering to Predict Departure Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1