SplineGen:用于无组织点 B 样条逼近的生成模型

Qiang Zou, Lizhen Zhu
{"title":"SplineGen:用于无组织点 B 样条逼近的生成模型","authors":"Qiang Zou, Lizhen Zhu","doi":"arxiv-2406.09692","DOIUrl":null,"url":null,"abstract":"This paper presents a learning-based method to solve the traditional\nparameterization and knot placement problems in B-spline approximation.\nDifferent from conventional heuristic methods or recent AI-based methods, the\nproposed method does not assume ordered or fixed-size data points as input.\nThere is also no need for manually setting the number of knots. It casts the\nparameterization and knot placement problems as a sequence-to-sequence\ntranslation problem, a generative process automatically determining the number\nof knots, their placement, parameter values, and their ordering. Once trained,\nSplineGen demonstrates a notable improvement over existing methods, with a one\nto two orders of magnitude increase in approximation accuracy on test data.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SplineGen: a generative model for B-spline approximation of unorganized points\",\"authors\":\"Qiang Zou, Lizhen Zhu\",\"doi\":\"arxiv-2406.09692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a learning-based method to solve the traditional\\nparameterization and knot placement problems in B-spline approximation.\\nDifferent from conventional heuristic methods or recent AI-based methods, the\\nproposed method does not assume ordered or fixed-size data points as input.\\nThere is also no need for manually setting the number of knots. It casts the\\nparameterization and knot placement problems as a sequence-to-sequence\\ntranslation problem, a generative process automatically determining the number\\nof knots, their placement, parameter values, and their ordering. Once trained,\\nSplineGen demonstrates a notable improvement over existing methods, with a one\\nto two orders of magnitude increase in approximation accuracy on test data.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.09692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于学习的方法来解决 B-样条曲线逼近中的传统参数化和节点放置问题。与传统的启发式方法或最新的基于人工智能的方法不同,本文提出的方法不假定有序或固定大小的数据点作为输入,也不需要手动设置节点数量。它将参数化和节点放置问题视为序列到序列的转换问题,是一个自动确定节点数量、节点放置、参数值和节点排序的生成过程。经过训练后,SplineGen 与现有方法相比有了显著改进,测试数据的近似精度提高了一到两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SplineGen: a generative model for B-spline approximation of unorganized points
This paper presents a learning-based method to solve the traditional parameterization and knot placement problems in B-spline approximation. Different from conventional heuristic methods or recent AI-based methods, the proposed method does not assume ordered or fixed-size data points as input. There is also no need for manually setting the number of knots. It casts the parameterization and knot placement problems as a sequence-to-sequence translation problem, a generative process automatically determining the number of knots, their placement, parameter values, and their ordering. Once trained, SplineGen demonstrates a notable improvement over existing methods, with a one to two orders of magnitude increase in approximation accuracy on test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1