带有协变量的计数时间序列模型的规格检验

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Test Pub Date : 2024-07-01 DOI:10.1007/s11749-024-00933-x
Šárka Hudecová, Marie Hušková, Simos G. Meintanis
{"title":"带有协变量的计数时间序列模型的规格检验","authors":"Šárka Hudecová, Marie Hušková, Simos G. Meintanis","doi":"10.1007/s11749-024-00933-x","DOIUrl":null,"url":null,"abstract":"<p>We propose a goodness-of-fit test for a class of count time series models with covariates which includes the Poisson autoregressive model with covariates (PARX) as a special case. The test criteria are derived from a specific characterization for the conditional probability generating function, and the test statistic is formulated as a <span>\\(L_2\\)</span> weighting norm of the corresponding sample counterpart. The asymptotic properties of the proposed test statistic are provided under the null hypothesis as well as under specific alternatives. A bootstrap version of the test is explored in a Monte–Carlo study and illustrated on a real data set on road safety.\n</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specifications tests for count time series models with covariates\",\"authors\":\"Šárka Hudecová, Marie Hušková, Simos G. Meintanis\",\"doi\":\"10.1007/s11749-024-00933-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a goodness-of-fit test for a class of count time series models with covariates which includes the Poisson autoregressive model with covariates (PARX) as a special case. The test criteria are derived from a specific characterization for the conditional probability generating function, and the test statistic is formulated as a <span>\\\\(L_2\\\\)</span> weighting norm of the corresponding sample counterpart. The asymptotic properties of the proposed test statistic are provided under the null hypothesis as well as under specific alternatives. A bootstrap version of the test is explored in a Monte–Carlo study and illustrated on a real data set on road safety.\\n</p>\",\"PeriodicalId\":51189,\"journal\":{\"name\":\"Test\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Test\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11749-024-00933-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-024-00933-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类带有协变量的计数时间序列模型的拟合优度检验,其中带有协变量的泊松自回归模型(PARX)是一个特例。检验标准是从条件概率生成函数的一个特定特征推导出来的,检验统计量被表述为相应样本对应的加权规范(\(L_2\) weighting norm)。提出的检验统计量在零假设和特定替代假设下都具有渐近性质。在蒙特卡洛研究中探讨了该检验的自举版本,并在道路安全的真实数据集上进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Specifications tests for count time series models with covariates

We propose a goodness-of-fit test for a class of count time series models with covariates which includes the Poisson autoregressive model with covariates (PARX) as a special case. The test criteria are derived from a specific characterization for the conditional probability generating function, and the test statistic is formulated as a \(L_2\) weighting norm of the corresponding sample counterpart. The asymptotic properties of the proposed test statistic are provided under the null hypothesis as well as under specific alternatives. A bootstrap version of the test is explored in a Monte–Carlo study and illustrated on a real data set on road safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Test
Test 数学-统计学与概率论
CiteScore
2.20
自引率
7.70%
发文量
41
审稿时长
>12 weeks
期刊介绍: TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal. The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome. One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.
期刊最新文献
Jackknife empirical likelihood for the correlation coefficient with additive distortion measurement errors Nonparametric conditional survival function estimation and plug-in bandwidth selection with multiple covariates Higher-order spatial autoregressive varying coefficient model: estimation and specification test Composite quantile estimation in partially functional linear regression model with randomly censored responses Bayesian inference and cure rate modeling for event history data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1