用于光伏应用的四方单斜碲化镉的结构和光电特性的 DFT 研究

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Nanoparticle Research Pub Date : 2024-06-28 DOI:10.1007/s11051-024-06043-x
Mounaim Bencheikh, Larbi El Farh, Allal Challioui
{"title":"用于光伏应用的四方单斜碲化镉的结构和光电特性的 DFT 研究","authors":"Mounaim Bencheikh, Larbi El Farh, Allal Challioui","doi":"10.1007/s11051-024-06043-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we examine the application of density functional theory (DFT) to determine the structural and optoelectronic properties of the tetragonal monochalcogenide TlSe, in order to assess its suitability for use in optoelectronic devices, photovoltaics, etc. These calculations are carried out using the full-potential linearized augmented plane wave (FP-LAPW) method, implemented in Wien2k software. The monochalcogenide compound TlSe adopts a tetragonal structure with I4/mcm space group symmetry (No. 140). We determined the ground-state values by calculating the total energy as a function of volume, relaxing the atomic positions for each volume, in order to minimize both the strength and the c/a ratio. Equilibrium structural parameters are derived from the internal structure parameters by fitting the total energy versus volume results with the Birch-Murnaghan equation of state. We studied the electronic properties using two approaches, GGA and TB-mbj. The latter approach gave an energy gap of 0.49 eV, close to the experimental value, which led us to adopt the TB-mbj approach in calculating optical properties such as the complex dielectric function <span>\\(\\mathrm\\varepsilon\\left(\\mathrm\\omega\\right)\\)</span>, complex refractive index <span>\\(\\mathrm N\\left(\\mathrm\\omega\\right)\\)</span>, optical reflectivity <span>\\(\\mathrm R\\left(\\mathrm\\omega\\right)\\)</span>, energy loss function <span>\\(\\mathrm L\\left(\\mathrm\\omega\\right)\\)</span>, optical absorption <span>\\(\\mathrm\\alpha\\left(\\mathrm\\omega\\right)\\)</span> and optical conductivity <span>\\(\\mathrm\\sigma\\left(\\mathrm\\omega\\right)\\)</span>.</p>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT Investigation of the structural and optoelectronic properties of the tetragonal monochalcogenide TlSe for photovoltaics application\",\"authors\":\"Mounaim Bencheikh, Larbi El Farh, Allal Challioui\",\"doi\":\"10.1007/s11051-024-06043-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we examine the application of density functional theory (DFT) to determine the structural and optoelectronic properties of the tetragonal monochalcogenide TlSe, in order to assess its suitability for use in optoelectronic devices, photovoltaics, etc. These calculations are carried out using the full-potential linearized augmented plane wave (FP-LAPW) method, implemented in Wien2k software. The monochalcogenide compound TlSe adopts a tetragonal structure with I4/mcm space group symmetry (No. 140). We determined the ground-state values by calculating the total energy as a function of volume, relaxing the atomic positions for each volume, in order to minimize both the strength and the c/a ratio. Equilibrium structural parameters are derived from the internal structure parameters by fitting the total energy versus volume results with the Birch-Murnaghan equation of state. We studied the electronic properties using two approaches, GGA and TB-mbj. The latter approach gave an energy gap of 0.49 eV, close to the experimental value, which led us to adopt the TB-mbj approach in calculating optical properties such as the complex dielectric function <span>\\\\(\\\\mathrm\\\\varepsilon\\\\left(\\\\mathrm\\\\omega\\\\right)\\\\)</span>, complex refractive index <span>\\\\(\\\\mathrm N\\\\left(\\\\mathrm\\\\omega\\\\right)\\\\)</span>, optical reflectivity <span>\\\\(\\\\mathrm R\\\\left(\\\\mathrm\\\\omega\\\\right)\\\\)</span>, energy loss function <span>\\\\(\\\\mathrm L\\\\left(\\\\mathrm\\\\omega\\\\right)\\\\)</span>, optical absorption <span>\\\\(\\\\mathrm\\\\alpha\\\\left(\\\\mathrm\\\\omega\\\\right)\\\\)</span> and optical conductivity <span>\\\\(\\\\mathrm\\\\sigma\\\\left(\\\\mathrm\\\\omega\\\\right)\\\\)</span>.</p>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11051-024-06043-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11051-024-06043-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了如何应用密度泛函理论(DFT)来确定四方单斜碲化镉的结构和光电特性,以评估其在光电设备、光伏等领域的适用性。这些计算是采用 Wien2k 软件中的全电位线性化增强平面波 (FP-LAPW) 方法进行的。单斜化合物 TlSe 采用 I4/mcm 空间群对称的四方结构(编号 140)。我们通过计算总能量与体积的函数关系来确定基态值,并放宽了每个体积的原子位置,以尽量减小强度和 c/a 比。通过用 Birch-Murnaghan 状态方程拟合总能量随体积变化的结果,从内部结构参数推导出平衡结构参数。我们使用两种方法(GGA 和 TB-mbj)研究了电子特性。后一种方法得出的能隙为 0.49 eV,接近实验值,这使得我们在计算光学性质时采用了 TB-mbj 方法,如复介电函数 (\mathrm\varepsilon\left(\mathrm\omega\right)\)、复折射率 (\mathrm N\left(\mathrm\omega\right)\)、光反射率、能量损失函数、光吸收率和光导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A DFT Investigation of the structural and optoelectronic properties of the tetragonal monochalcogenide TlSe for photovoltaics application

In this paper, we examine the application of density functional theory (DFT) to determine the structural and optoelectronic properties of the tetragonal monochalcogenide TlSe, in order to assess its suitability for use in optoelectronic devices, photovoltaics, etc. These calculations are carried out using the full-potential linearized augmented plane wave (FP-LAPW) method, implemented in Wien2k software. The monochalcogenide compound TlSe adopts a tetragonal structure with I4/mcm space group symmetry (No. 140). We determined the ground-state values by calculating the total energy as a function of volume, relaxing the atomic positions for each volume, in order to minimize both the strength and the c/a ratio. Equilibrium structural parameters are derived from the internal structure parameters by fitting the total energy versus volume results with the Birch-Murnaghan equation of state. We studied the electronic properties using two approaches, GGA and TB-mbj. The latter approach gave an energy gap of 0.49 eV, close to the experimental value, which led us to adopt the TB-mbj approach in calculating optical properties such as the complex dielectric function \(\mathrm\varepsilon\left(\mathrm\omega\right)\), complex refractive index \(\mathrm N\left(\mathrm\omega\right)\), optical reflectivity \(\mathrm R\left(\mathrm\omega\right)\), energy loss function \(\mathrm L\left(\mathrm\omega\right)\), optical absorption \(\mathrm\alpha\left(\mathrm\omega\right)\) and optical conductivity \(\mathrm\sigma\left(\mathrm\omega\right)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
期刊最新文献
Zirconium-based mixed ligand metal–organic framework for efficient adsorption of organic dyes Investigation of Pb’s impact on the physical, optical, and magnetic characteristics of $${\mathbf{B}\mathbf{a}}_{0.5-\mathbf{x}}{\mathbf{S}\mathbf{r}}_{0.5}{\mathbf{P}\mathbf{b}}_{\mathbf{x}}{\mathbf{F}\mathbf{e}}_{12}{\mathbf{O}}_{19}$$ hexaferrite A micromagnetic study of sample size effects on dynamic hysteresis properties and dynamic phase transitions of Fe and $$Fe_3O_4$$ nanodisks Catalytic degradation of rhodamine B by α-DMACoPc/TiO2/MIL-101 (Fe) enhanced catalytic system MAIPbI2 perovskite solar cells fabricated based on the TiO2, RGO@TiO2, and SnO2:F electron transport layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1