Muhammad Nouman, Sui Yang Khoo, M. A. Parvez Mahmud, Abbas Z. Kouzani
{"title":"通过睡眠姿势分析推进心理健康预测:一种堆叠集合学习方法","authors":"Muhammad Nouman, Sui Yang Khoo, M. A. Parvez Mahmud, Abbas Z. Kouzani","doi":"10.1007/s12652-024-04827-6","DOIUrl":null,"url":null,"abstract":"<p>Sleep posture is closely related to sleep quality, and can offer insights into an individual’s health. This correlation can potentially aid in the early detection of mental health disorders such as depression and anxiety. Current research focuses on embedding pressure sensors in bedsheets, attaching accelerometers on a subject’s chest, and installing cameras in bedrooms for sleep posture monitoring. However, such solutions sacrifice either the user's sleep comfort or privacy. This study explores the effectiveness of using contactless ultra-wideband (UWB) sensors for sleep posture monitoring. We employed a UWB dataset that is composed of the measurements from 12 volunteers during sleep. A stacking ensemble learning method is introduced for the monitoring of sleep postural transitions, which constitute two levels of learning. At the base-learner level, six transfer learning models (VGG16, ResNet50V2, MobileNet50V2, DenseNet121, VGG19, and ResNet101V2) are trained on the training dataset for initial predictions. Then, the logistic regression is employed as a meta-learner which is trained on the predictions gained from the base-learner to obtain final sleep postural transitions. In addition, a sleep posture monitoring algorithm is presented that can give accurate statistics of total sleep postural transitions. Extensive experiments are conducted, achieving the highest accuracy rate of 86.7% for the classification of sleep postural transitions. Moreover, time-series data augmentation is employed, which improves the accuracy by 13%. The privacy-preserving sleep monitoring solution presented in this paper holds promise for applications in mental health research.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing mental health predictions through sleep posture analysis: a stacking ensemble learning approach\",\"authors\":\"Muhammad Nouman, Sui Yang Khoo, M. A. Parvez Mahmud, Abbas Z. Kouzani\",\"doi\":\"10.1007/s12652-024-04827-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sleep posture is closely related to sleep quality, and can offer insights into an individual’s health. This correlation can potentially aid in the early detection of mental health disorders such as depression and anxiety. Current research focuses on embedding pressure sensors in bedsheets, attaching accelerometers on a subject’s chest, and installing cameras in bedrooms for sleep posture monitoring. However, such solutions sacrifice either the user's sleep comfort or privacy. This study explores the effectiveness of using contactless ultra-wideband (UWB) sensors for sleep posture monitoring. We employed a UWB dataset that is composed of the measurements from 12 volunteers during sleep. A stacking ensemble learning method is introduced for the monitoring of sleep postural transitions, which constitute two levels of learning. At the base-learner level, six transfer learning models (VGG16, ResNet50V2, MobileNet50V2, DenseNet121, VGG19, and ResNet101V2) are trained on the training dataset for initial predictions. Then, the logistic regression is employed as a meta-learner which is trained on the predictions gained from the base-learner to obtain final sleep postural transitions. In addition, a sleep posture monitoring algorithm is presented that can give accurate statistics of total sleep postural transitions. Extensive experiments are conducted, achieving the highest accuracy rate of 86.7% for the classification of sleep postural transitions. Moreover, time-series data augmentation is employed, which improves the accuracy by 13%. The privacy-preserving sleep monitoring solution presented in this paper holds promise for applications in mental health research.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04827-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04827-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Advancing mental health predictions through sleep posture analysis: a stacking ensemble learning approach
Sleep posture is closely related to sleep quality, and can offer insights into an individual’s health. This correlation can potentially aid in the early detection of mental health disorders such as depression and anxiety. Current research focuses on embedding pressure sensors in bedsheets, attaching accelerometers on a subject’s chest, and installing cameras in bedrooms for sleep posture monitoring. However, such solutions sacrifice either the user's sleep comfort or privacy. This study explores the effectiveness of using contactless ultra-wideband (UWB) sensors for sleep posture monitoring. We employed a UWB dataset that is composed of the measurements from 12 volunteers during sleep. A stacking ensemble learning method is introduced for the monitoring of sleep postural transitions, which constitute two levels of learning. At the base-learner level, six transfer learning models (VGG16, ResNet50V2, MobileNet50V2, DenseNet121, VGG19, and ResNet101V2) are trained on the training dataset for initial predictions. Then, the logistic regression is employed as a meta-learner which is trained on the predictions gained from the base-learner to obtain final sleep postural transitions. In addition, a sleep posture monitoring algorithm is presented that can give accurate statistics of total sleep postural transitions. Extensive experiments are conducted, achieving the highest accuracy rate of 86.7% for the classification of sleep postural transitions. Moreover, time-series data augmentation is employed, which improves the accuracy by 13%. The privacy-preserving sleep monitoring solution presented in this paper holds promise for applications in mental health research.
期刊介绍:
The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to):
Pervasive/Ubiquitous Computing and Applications
Cognitive wireless sensor network
Embedded Systems and Software
Mobile Computing and Wireless Communications
Next Generation Multimedia Systems
Security, Privacy and Trust
Service and Semantic Computing
Advanced Networking Architectures
Dependable, Reliable and Autonomic Computing
Embedded Smart Agents
Context awareness, social sensing and inference
Multi modal interaction design
Ergonomics and product prototyping
Intelligent and self-organizing transportation networks & services
Healthcare Systems
Virtual Humans & Virtual Worlds
Wearables sensors and actuators