Qingkai Meng , Andreas Kasis , Hao Yang , Marios M. Polycarpou
{"title":"拒绝服务攻击下网络交换系统的安全状态估计","authors":"Qingkai Meng , Andreas Kasis , Hao Yang , Marios M. Polycarpou","doi":"10.1016/j.ejcon.2024.101037","DOIUrl":null,"url":null,"abstract":"<div><div><span>This paper studies the problem of secure state estimation of networked </span>switched systems in the presence of denial-of-service (DoS) attacks, as well as disturbances and measurement noise. Firstly, a state transformation rule is designed to partition the original system into two subsystems, facilitating the design of discrete and continuous state observers. Secondly, by modifying the traditional super-twisting sliding-mode method and taking into account the frequency and duration characteristics of DoS attacks, we employ dynamic differential properties between different modes to design a switching law identification strategy. We show that this strategy can accurately estimate the switching state without imposing any requirement on the switching times and sequences. Thirdly, based on the identified activated mode, a set of mode-dependent continuous state sliding-mode observers is designed, that achieves continuous state estimation in finite time. The practicality and applicability of the developed results are validated through numerical simulations.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101037"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure state estimation of networked switched systems under denial-of-service attacks\",\"authors\":\"Qingkai Meng , Andreas Kasis , Hao Yang , Marios M. Polycarpou\",\"doi\":\"10.1016/j.ejcon.2024.101037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>This paper studies the problem of secure state estimation of networked </span>switched systems in the presence of denial-of-service (DoS) attacks, as well as disturbances and measurement noise. Firstly, a state transformation rule is designed to partition the original system into two subsystems, facilitating the design of discrete and continuous state observers. Secondly, by modifying the traditional super-twisting sliding-mode method and taking into account the frequency and duration characteristics of DoS attacks, we employ dynamic differential properties between different modes to design a switching law identification strategy. We show that this strategy can accurately estimate the switching state without imposing any requirement on the switching times and sequences. Thirdly, based on the identified activated mode, a set of mode-dependent continuous state sliding-mode observers is designed, that achieves continuous state estimation in finite time. The practicality and applicability of the developed results are validated through numerical simulations.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101037\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024000979\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024000979","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了存在拒绝服务(DoS)攻击以及干扰和测量噪声的网络交换系统的安全状态估计问题。首先,本文设计了一种状态变换规则,将原始系统划分为两个子系统,从而方便设计离散和连续状态观测器。其次,通过修改传统的超扭曲滑动模式方法,并考虑到 DoS 攻击的频率和持续时间特征,我们利用不同模式之间的动态差分特性设计了一种切换规律识别策略。我们的研究表明,这种策略可以准确估计切换状态,而无需对切换时间和顺序提出任何要求。第三,基于识别出的激活模式,我们设计了一组与模式相关的连续状态滑动模式观测器,可在有限时间内实现连续状态估计。通过数值模拟验证了所开发成果的实用性和适用性。
Secure state estimation of networked switched systems under denial-of-service attacks
This paper studies the problem of secure state estimation of networked switched systems in the presence of denial-of-service (DoS) attacks, as well as disturbances and measurement noise. Firstly, a state transformation rule is designed to partition the original system into two subsystems, facilitating the design of discrete and continuous state observers. Secondly, by modifying the traditional super-twisting sliding-mode method and taking into account the frequency and duration characteristics of DoS attacks, we employ dynamic differential properties between different modes to design a switching law identification strategy. We show that this strategy can accurately estimate the switching state without imposing any requirement on the switching times and sequences. Thirdly, based on the identified activated mode, a set of mode-dependent continuous state sliding-mode observers is designed, that achieves continuous state estimation in finite time. The practicality and applicability of the developed results are validated through numerical simulations.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.