高斯-牛顿 Runge-Kutta 积分法有效离散化具有长视野和最小二乘成本的最优控制问题

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS European Journal of Control Pub Date : 2024-11-01 DOI:10.1016/j.ejcon.2024.101038
Jonathan Frey , Katrin Baumgärtner , Moritz Diehl
{"title":"高斯-牛顿 Runge-Kutta 积分法有效离散化具有长视野和最小二乘成本的最优控制问题","authors":"Jonathan Frey ,&nbsp;Katrin Baumgärtner ,&nbsp;Moritz Diehl","doi":"10.1016/j.ejcon.2024.101038","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes an efficient treatment of continuous-time optimal control problems with long horizons and nonlinear least-squares costs. In particular, we present the Gauss–Newton Runge–Kutta (GNRK) integrator which provides a high-order cost integration. Crucially, the Hessian of the cost terms required within an SQP-type algorithm is approximated with a Gauss–Newton Hessian. Moreover, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> penalty formulations for constraints are shown to be particularly effective for optimization with GNRK. An efficient implementation of GNRK is provided in the open-source software framework <span>acados</span>. We demonstrate the effectiveness of the proposed approach and its implementation on an illustrative example showing a reduction of relative suboptimality by a factor greater than 10 while increasing the runtime by only 10%.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101038"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauss–Newton Runge–Kutta integration for efficient discretization of optimal control problems with long horizons and least-squares costs\",\"authors\":\"Jonathan Frey ,&nbsp;Katrin Baumgärtner ,&nbsp;Moritz Diehl\",\"doi\":\"10.1016/j.ejcon.2024.101038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work proposes an efficient treatment of continuous-time optimal control problems with long horizons and nonlinear least-squares costs. In particular, we present the Gauss–Newton Runge–Kutta (GNRK) integrator which provides a high-order cost integration. Crucially, the Hessian of the cost terms required within an SQP-type algorithm is approximated with a Gauss–Newton Hessian. Moreover, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> penalty formulations for constraints are shown to be particularly effective for optimization with GNRK. An efficient implementation of GNRK is provided in the open-source software framework <span>acados</span>. We demonstrate the effectiveness of the proposed approach and its implementation on an illustrative example showing a reduction of relative suboptimality by a factor greater than 10 while increasing the runtime by only 10%.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101038\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024000980\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024000980","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一种有效的方法,用于处理具有长周期和非线性最小二乘成本的连续时间最优控制问题。我们特别提出了高斯-牛顿 Runge-Kutta (GNRK) 积分器,它提供了高阶成本积分。最重要的是,SQP 类型算法中所需成本项的 Hessian 可以用高斯-牛顿 Hessian 逼近。此外,约束条件的惩罚公式对使用 GNRK 进行优化特别有效。在开源软件框架中提供了 GNRK 的高效实现。我们在一个示例中演示了所提方法及其实现的有效性,结果表明相对次优性降低了 10 倍以上,而运行时间仅增加了 10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gauss–Newton Runge–Kutta integration for efficient discretization of optimal control problems with long horizons and least-squares costs
This work proposes an efficient treatment of continuous-time optimal control problems with long horizons and nonlinear least-squares costs. In particular, we present the Gauss–Newton Runge–Kutta (GNRK) integrator which provides a high-order cost integration. Crucially, the Hessian of the cost terms required within an SQP-type algorithm is approximated with a Gauss–Newton Hessian. Moreover, L2 penalty formulations for constraints are shown to be particularly effective for optimization with GNRK. An efficient implementation of GNRK is provided in the open-source software framework acados. We demonstrate the effectiveness of the proposed approach and its implementation on an illustrative example showing a reduction of relative suboptimality by a factor greater than 10 while increasing the runtime by only 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
期刊最新文献
Editorial Board Data-driven event-triggering mechanism for linear systems subject to input saturation Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning Communication-aware formation control for networks of AUVs Scaled graphs for reset control system analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1