纵向数据加法模型的变量选择和结构识别

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-06-26 DOI:10.1007/s00180-024-01521-1
Ting Wang, Liya Fu, Yanan Song
{"title":"纵向数据加法模型的变量选择和结构识别","authors":"Ting Wang, Liya Fu, Yanan Song","doi":"10.1007/s00180-024-01521-1","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a polynomial structure identification (PSI) method for variable selection and model structure identification of additive models with longitudinal data. First, the backfitting algorithm and zero-order local polynomial smoothing method are used to select important variables in the additive model, and the importance of variables is determined through the inverse of the bandwidth parameter in the nonparametric partial kernel function. Second, the backfitting algorithm and <i>Q</i>-order local polynomial smoothing method are utilized to identify the specific structure of each selected predictor. To incorporate correlations within longitudinal data, a two-stage estimation method is proposed for estimating the regression parameters of the identified important variables: (i) Parameter estimators of the important variables are firstly obtained under an independence working model assumption; (ii) Generalized estimating equations with a working correlation matrix based on B-splines are constructed to obtain the final estimators of the parameters, which improve the efficiency of parameter estimation. Finally, simulation studies are carried out to evaluate the performance of the proposed method, followed by the presentation of two real-world examples for illustration.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"30 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable selection and structure identification for additive models with longitudinal data\",\"authors\":\"Ting Wang, Liya Fu, Yanan Song\",\"doi\":\"10.1007/s00180-024-01521-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a polynomial structure identification (PSI) method for variable selection and model structure identification of additive models with longitudinal data. First, the backfitting algorithm and zero-order local polynomial smoothing method are used to select important variables in the additive model, and the importance of variables is determined through the inverse of the bandwidth parameter in the nonparametric partial kernel function. Second, the backfitting algorithm and <i>Q</i>-order local polynomial smoothing method are utilized to identify the specific structure of each selected predictor. To incorporate correlations within longitudinal data, a two-stage estimation method is proposed for estimating the regression parameters of the identified important variables: (i) Parameter estimators of the important variables are firstly obtained under an independence working model assumption; (ii) Generalized estimating equations with a working correlation matrix based on B-splines are constructed to obtain the final estimators of the parameters, which improve the efficiency of parameter estimation. Finally, simulation studies are carried out to evaluate the performance of the proposed method, followed by the presentation of two real-world examples for illustration.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01521-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01521-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多项式结构识别(PSI)方法,用于纵向数据加法模型的变量选择和模型结构识别。首先,利用反拟合算法和零阶局部多项式平滑法来选择加法模型中的重要变量,并通过非参数偏核函数中带宽参数的倒数来确定变量的重要性。其次,利用反拟合算法和 Q 阶局部多项式平滑法来确定每个选定预测因子的具体结构。为了将纵向数据中的相关性考虑在内,提出了一种两阶段估计方法来估计所确定的重要变量的回归参数:(i) 首先在独立工作模型假设下得到重要变量的参数估计值;(ii) 基于 B-样条曲线构建具有工作相关矩阵的广义估计方程,得到最终的参数估计值,从而提高参数估计的效率。最后,通过模拟研究评估了所提方法的性能,并列举了两个实际案例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable selection and structure identification for additive models with longitudinal data

This paper proposes a polynomial structure identification (PSI) method for variable selection and model structure identification of additive models with longitudinal data. First, the backfitting algorithm and zero-order local polynomial smoothing method are used to select important variables in the additive model, and the importance of variables is determined through the inverse of the bandwidth parameter in the nonparametric partial kernel function. Second, the backfitting algorithm and Q-order local polynomial smoothing method are utilized to identify the specific structure of each selected predictor. To incorporate correlations within longitudinal data, a two-stage estimation method is proposed for estimating the regression parameters of the identified important variables: (i) Parameter estimators of the important variables are firstly obtained under an independence working model assumption; (ii) Generalized estimating equations with a working correlation matrix based on B-splines are constructed to obtain the final estimators of the parameters, which improve the efficiency of parameter estimation. Finally, simulation studies are carried out to evaluate the performance of the proposed method, followed by the presentation of two real-world examples for illustration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1