用于超薄聚酰胺有机溶剂纳滤膜的有机-有机界面聚合技术

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-07-01 DOI:10.1016/j.memsci.2024.123049
Wenyong Yang, Miaomiao Jia, Wei Shao, Zhen Chen, Jiajia He, Qingyun Wu, Panpan Zhang, Ming Xue, Yi Li
{"title":"用于超薄聚酰胺有机溶剂纳滤膜的有机-有机界面聚合技术","authors":"Wenyong Yang,&nbsp;Miaomiao Jia,&nbsp;Wei Shao,&nbsp;Zhen Chen,&nbsp;Jiajia He,&nbsp;Qingyun Wu,&nbsp;Panpan Zhang,&nbsp;Ming Xue,&nbsp;Yi Li","doi":"10.1016/j.memsci.2024.123049","DOIUrl":null,"url":null,"abstract":"<div><p>There is an increasing demand for advanced membranes that exhibit both high perm-selectivity and good stability in organic solvents, particularly for organic solvent nanofiltration (OSN). Traditional methods of synthesizing thin films using conventional interfacial polymerization (CIP) have been limited by the use of water-soluble monomers, which has hindered the development of high-performance membranes. To address this issue, a new method called organic-organic interfacial polymerization (OOIP) has been proposed. This method allows for the use of aromatic amines that are not water-soluble in the fabrication of ultrathin polyamide (PA) (&lt;40 nm) thin film composite (TFC) membranes. By investigating five different organic solvents (tetrahydrofuran, acetone, <em>N</em>,<em>N</em>-dimethylformamide, <em>N</em>,<em>N</em>-dimethylacetamide, dimethyl sulfoxide) with varying water content as the organic phase for a water-insoluble benzidine monomer, two diffusion models of monomers were identified that resulted in different membrane structures and degrees of network crosslinking. The ultrathin PA membranes produced using tetrahydrofuran-H<sub>2</sub>O and <em>N</em>,<em>N</em>-dimethylformamide-H<sub>2</sub>O, along with solvent activation, demonstrated high methanol permeances of 11.4 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> and 6.0 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, respectively, while maintaining exceptional rejections of over 99.0 % for small molecules with molecular weights greater than 452 g mol<sup>−1</sup>. The OOIP method is scalable and reproducible, making it suitable for large-scale membrane production. This innovative approach shows great potential for advancing OSN technology and providing efficient and cost-effective separation solutions for various industries.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic-organic interfacial polymerization for the ultrathin polyamide organic solvent nanofiltration membranes\",\"authors\":\"Wenyong Yang,&nbsp;Miaomiao Jia,&nbsp;Wei Shao,&nbsp;Zhen Chen,&nbsp;Jiajia He,&nbsp;Qingyun Wu,&nbsp;Panpan Zhang,&nbsp;Ming Xue,&nbsp;Yi Li\",\"doi\":\"10.1016/j.memsci.2024.123049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is an increasing demand for advanced membranes that exhibit both high perm-selectivity and good stability in organic solvents, particularly for organic solvent nanofiltration (OSN). Traditional methods of synthesizing thin films using conventional interfacial polymerization (CIP) have been limited by the use of water-soluble monomers, which has hindered the development of high-performance membranes. To address this issue, a new method called organic-organic interfacial polymerization (OOIP) has been proposed. This method allows for the use of aromatic amines that are not water-soluble in the fabrication of ultrathin polyamide (PA) (&lt;40 nm) thin film composite (TFC) membranes. By investigating five different organic solvents (tetrahydrofuran, acetone, <em>N</em>,<em>N</em>-dimethylformamide, <em>N</em>,<em>N</em>-dimethylacetamide, dimethyl sulfoxide) with varying water content as the organic phase for a water-insoluble benzidine monomer, two diffusion models of monomers were identified that resulted in different membrane structures and degrees of network crosslinking. The ultrathin PA membranes produced using tetrahydrofuran-H<sub>2</sub>O and <em>N</em>,<em>N</em>-dimethylformamide-H<sub>2</sub>O, along with solvent activation, demonstrated high methanol permeances of 11.4 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> and 6.0 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, respectively, while maintaining exceptional rejections of over 99.0 % for small molecules with molecular weights greater than 452 g mol<sup>−1</sup>. The OOIP method is scalable and reproducible, making it suitable for large-scale membrane production. This innovative approach shows great potential for advancing OSN technology and providing efficient and cost-effective separation solutions for various industries.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824006434\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824006434","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

人们对在有机溶剂中同时具有高选择性和良好稳定性的先进膜的需求与日俱增,尤其是在有机溶剂纳滤(OSN)方面。使用传统界面聚合(CIP)合成薄膜的传统方法因使用水溶性单体而受到限制,阻碍了高性能膜的开发。为了解决这个问题,有人提出了一种称为有机-有机界面聚合(OOIP)的新方法。这种方法允许使用不溶于水的芳香胺来制造超薄聚酰胺(PA)(<40 nm)薄膜复合(TFC)膜。通过研究五种含水量不同的有机溶剂(四氢呋喃、丙酮、二甲基甲酰胺、二甲基乙酰胺、二甲亚砜)作为不溶于水的联苯胺单体的有机相,确定了两种单体扩散模式,它们导致了不同的膜结构和网络交联程度。使用四氢呋喃-HO 和二甲基甲酰胺-HO 以及溶剂活化法生产的超薄 PA 膜的甲醇渗透率分别高达 11.4 L m h bar 和 6.0 L m h bar,同时对分子量大于 452 g mol 的小分子的排斥率也保持在 99.0% 以上。OOIP 方法具有可扩展性和可重复性,适合大规模膜生产。这种创新方法显示出巨大的潜力,可推动 OSN 技术的发展,为各行各业提供高效、经济的分离解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic-organic interfacial polymerization for the ultrathin polyamide organic solvent nanofiltration membranes

There is an increasing demand for advanced membranes that exhibit both high perm-selectivity and good stability in organic solvents, particularly for organic solvent nanofiltration (OSN). Traditional methods of synthesizing thin films using conventional interfacial polymerization (CIP) have been limited by the use of water-soluble monomers, which has hindered the development of high-performance membranes. To address this issue, a new method called organic-organic interfacial polymerization (OOIP) has been proposed. This method allows for the use of aromatic amines that are not water-soluble in the fabrication of ultrathin polyamide (PA) (<40 nm) thin film composite (TFC) membranes. By investigating five different organic solvents (tetrahydrofuran, acetone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide) with varying water content as the organic phase for a water-insoluble benzidine monomer, two diffusion models of monomers were identified that resulted in different membrane structures and degrees of network crosslinking. The ultrathin PA membranes produced using tetrahydrofuran-H2O and N,N-dimethylformamide-H2O, along with solvent activation, demonstrated high methanol permeances of 11.4 L m−2 h−1 bar−1 and 6.0 L m−2 h−1 bar−1, respectively, while maintaining exceptional rejections of over 99.0 % for small molecules with molecular weights greater than 452 g mol−1. The OOIP method is scalable and reproducible, making it suitable for large-scale membrane production. This innovative approach shows great potential for advancing OSN technology and providing efficient and cost-effective separation solutions for various industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Interfacial oligomer splicing toward 3D silicon-centered polyimine nanofilm for rapid molecule/ion differentiation Hydrothermally rearranged cellulose membranes for controlled size sieving Polyelectrolyte-modified covalent organic framework membranes for multivalent cation removal Study on the effect mechanism of functional graphene oxide on the performance of polymer electrolyte membrane for fuel cells A novel dual-function antiscalant carboxymethyl cellulose-graft-protocatechuic acid for efficient scaling and biofouling prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1