{"title":"高能量密度柔性锂离子电池的最新进展和实际挑战","authors":"Guangxiang Zhang, Xin Chen, Yulin Ma, Hua Huo, Pengjian Zuo, Geping Yin, Yunzhi Gao, Chuankai Fu","doi":"10.1007/s11705-024-2444-y","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid iteration and update of wearable flexible devices, high-energy-density flexible lithium-ion batteries are rapidly thriving. Flexibility, energy density, and safety are all important indicators for flexible lithiumion batteries, which can be determined jointly by material selection and structural design. Here, recent progress on high-energy-density electrode materials and flexible structure designs are discussed. Commercialized electrode materials and the next-generation high-energy-density electrode materials are analyzed in detail. The electrolytes with high safety and excellent flexibility are classified and discussed. The strategies to increase the mass loading of active materials on the electrodes by designing the current collector and electrode structure are discussed with keys of representative works. And the novel configuration structures to enhance the flexibility of batteries are displayed. In the end, it is pointed out that it is necessary to quantify the comprehensive performance of flexible lithium-ion batteries and simultaneously enhance the energy density, flexibility, and safety of batteries for the development of the next-generation high-energy-density flexible lithium-ion batteries.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries\",\"authors\":\"Guangxiang Zhang, Xin Chen, Yulin Ma, Hua Huo, Pengjian Zuo, Geping Yin, Yunzhi Gao, Chuankai Fu\",\"doi\":\"10.1007/s11705-024-2444-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid iteration and update of wearable flexible devices, high-energy-density flexible lithium-ion batteries are rapidly thriving. Flexibility, energy density, and safety are all important indicators for flexible lithiumion batteries, which can be determined jointly by material selection and structural design. Here, recent progress on high-energy-density electrode materials and flexible structure designs are discussed. Commercialized electrode materials and the next-generation high-energy-density electrode materials are analyzed in detail. The electrolytes with high safety and excellent flexibility are classified and discussed. The strategies to increase the mass loading of active materials on the electrodes by designing the current collector and electrode structure are discussed with keys of representative works. And the novel configuration structures to enhance the flexibility of batteries are displayed. In the end, it is pointed out that it is necessary to quantify the comprehensive performance of flexible lithium-ion batteries and simultaneously enhance the energy density, flexibility, and safety of batteries for the development of the next-generation high-energy-density flexible lithium-ion batteries.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 8\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2444-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2444-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries
With the rapid iteration and update of wearable flexible devices, high-energy-density flexible lithium-ion batteries are rapidly thriving. Flexibility, energy density, and safety are all important indicators for flexible lithiumion batteries, which can be determined jointly by material selection and structural design. Here, recent progress on high-energy-density electrode materials and flexible structure designs are discussed. Commercialized electrode materials and the next-generation high-energy-density electrode materials are analyzed in detail. The electrolytes with high safety and excellent flexibility are classified and discussed. The strategies to increase the mass loading of active materials on the electrodes by designing the current collector and electrode structure are discussed with keys of representative works. And the novel configuration structures to enhance the flexibility of batteries are displayed. In the end, it is pointed out that it is necessary to quantify the comprehensive performance of flexible lithium-ion batteries and simultaneously enhance the energy density, flexibility, and safety of batteries for the development of the next-generation high-energy-density flexible lithium-ion batteries.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.