Baoyu Wu, Hao Sun, Xiaoxue Li, Yinyi Gao, Tianzeng Bao, Hongbin Wu, Kai Zhu, Dianxue Cao
{"title":"通过氯化钠模板提取的石油沥青硬碳作为钠离子电池的高倍率负极材料","authors":"Baoyu Wu, Hao Sun, Xiaoxue Li, Yinyi Gao, Tianzeng Bao, Hongbin Wu, Kai Zhu, Dianxue Cao","doi":"10.1007/s11705-024-2430-4","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mA·hg<sup>−1</sup> after undergoing full activation through 500 cycles at a density of current of 0.1 A·g<sup>−1</sup>. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g<sup>−1</sup> at a density of current of 0.5 A·g<sup>−1</sup>. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g<sup>−1</sup> after 750 cycles) and a remarkable rate ability (166 mAh·g<sup>−1</sup> at 2 A·g<sup>−1</sup>). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery\",\"authors\":\"Baoyu Wu, Hao Sun, Xiaoxue Li, Yinyi Gao, Tianzeng Bao, Hongbin Wu, Kai Zhu, Dianxue Cao\",\"doi\":\"10.1007/s11705-024-2430-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mA·hg<sup>−1</sup> after undergoing full activation through 500 cycles at a density of current of 0.1 A·g<sup>−1</sup>. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g<sup>−1</sup> at a density of current of 0.5 A·g<sup>−1</sup>. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g<sup>−1</sup> after 750 cycles) and a remarkable rate ability (166 mAh·g<sup>−1</sup> at 2 A·g<sup>−1</sup>). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2430-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2430-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
钠离子电池(SIB)因其与锂离子电池相似的工作机理和丰富的钠资源储量而在储能领域备受关注。探索具有良好电化学性能的碳基负极材料的简便合成方法是促进钠离子电池实际应用的关键。本研究选择石油沥青和可回收氯化钠作为碳源和模板,以获得用于 SIBs 的硬碳(HC)阳极。通过评估不同 HC 材料的钠离子存储行为,对碳化时间和温度进行了优化。在 0.1 A-g-1 的电流密度下,经过 500 个循环的完全活化后,优化后的 HC 显示出超过 430 mA-hg-1 的显著容量。此外,在 0.5 A-g-1 的电流密度下,它的初始放电容量为 276 mAh-g-1。同时,经过优化的 HC 显示出良好的容量保持能力(750 次循环后为 170 mAh-g-1)和显著的速率能力(2 A-g-1 时为 166 mAh-g-1)。容量的提高归功于适当的石墨化程度和表面积,它们改善了钠离子的传输和存储。
Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery
Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mA·hg−1 after undergoing full activation through 500 cycles at a density of current of 0.1 A·g−1. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g−1 at a density of current of 0.5 A·g−1. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g−1 after 750 cycles) and a remarkable rate ability (166 mAh·g−1 at 2 A·g−1). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.