Rafael Augusto Gomes, Lucas Antonio de Oliveira, Matheus Brendon Francisco and Guilherme Ferreira Gomes
{"title":"具有负泊松比的新型蜻蜓翼形辅助管状结构","authors":"Rafael Augusto Gomes, Lucas Antonio de Oliveira, Matheus Brendon Francisco and Guilherme Ferreira Gomes","doi":"10.1088/1361-665x/ad59e4","DOIUrl":null,"url":null,"abstract":"Mechanical structures abilities to absorb and dissipate energy have a variety of applications in daily life, including the ability to dampen mechanical vibrations and shock effects. In the present study, inspired by the dragonfly wing (DFW) shape, a novel auxetic unit cell was developed with the goal of proposing a novel structure with a lower stress concentrator and consequently increasing energy absorption. The negative Poisson’s ratio behavior was also studied. The DFW shaped unit cells were applied in a tubular structure, and the experimental samples were produced utilizing an additive manufacturing process with polylactic acid filament. To validate the ability to absorb energy of the novel unit cell, a comparison was proposed with the classical reentrant auxetic tubular structure following two different parameters: weight and the number of unit cells being developed in two different DFW structures. The study of the novel unit cell was performed using finite element analysis and experimental testing, and excellent agreement was observed between them. As a result, the bio-inspired DFWs shape in both configurations proposed when compared to the classical reentrant presented an excellent result in terms of absorbing energy, where the structure with the same quantity of unit cells and the structure with the same weight respectively absorb 163% and 79% when compared to the classical Reentrant, finally the new structure presented the negative Poisson’s ratio of −0.5, presenting an auxetic behavior and being able to resist more force and displacement","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"47 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel dragonfly wing shape auxetic tubular structure with negative Poisson’s ratio\",\"authors\":\"Rafael Augusto Gomes, Lucas Antonio de Oliveira, Matheus Brendon Francisco and Guilherme Ferreira Gomes\",\"doi\":\"10.1088/1361-665x/ad59e4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical structures abilities to absorb and dissipate energy have a variety of applications in daily life, including the ability to dampen mechanical vibrations and shock effects. In the present study, inspired by the dragonfly wing (DFW) shape, a novel auxetic unit cell was developed with the goal of proposing a novel structure with a lower stress concentrator and consequently increasing energy absorption. The negative Poisson’s ratio behavior was also studied. The DFW shaped unit cells were applied in a tubular structure, and the experimental samples were produced utilizing an additive manufacturing process with polylactic acid filament. To validate the ability to absorb energy of the novel unit cell, a comparison was proposed with the classical reentrant auxetic tubular structure following two different parameters: weight and the number of unit cells being developed in two different DFW structures. The study of the novel unit cell was performed using finite element analysis and experimental testing, and excellent agreement was observed between them. As a result, the bio-inspired DFWs shape in both configurations proposed when compared to the classical reentrant presented an excellent result in terms of absorbing energy, where the structure with the same quantity of unit cells and the structure with the same weight respectively absorb 163% and 79% when compared to the classical Reentrant, finally the new structure presented the negative Poisson’s ratio of −0.5, presenting an auxetic behavior and being able to resist more force and displacement\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad59e4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad59e4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A novel dragonfly wing shape auxetic tubular structure with negative Poisson’s ratio
Mechanical structures abilities to absorb and dissipate energy have a variety of applications in daily life, including the ability to dampen mechanical vibrations and shock effects. In the present study, inspired by the dragonfly wing (DFW) shape, a novel auxetic unit cell was developed with the goal of proposing a novel structure with a lower stress concentrator and consequently increasing energy absorption. The negative Poisson’s ratio behavior was also studied. The DFW shaped unit cells were applied in a tubular structure, and the experimental samples were produced utilizing an additive manufacturing process with polylactic acid filament. To validate the ability to absorb energy of the novel unit cell, a comparison was proposed with the classical reentrant auxetic tubular structure following two different parameters: weight and the number of unit cells being developed in two different DFW structures. The study of the novel unit cell was performed using finite element analysis and experimental testing, and excellent agreement was observed between them. As a result, the bio-inspired DFWs shape in both configurations proposed when compared to the classical reentrant presented an excellent result in terms of absorbing energy, where the structure with the same quantity of unit cells and the structure with the same weight respectively absorb 163% and 79% when compared to the classical Reentrant, finally the new structure presented the negative Poisson’s ratio of −0.5, presenting an auxetic behavior and being able to resist more force and displacement
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.