受布雷斯悖论启发的可逆负压缩超材料

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION Smart Materials and Structures Pub Date : 2024-06-27 DOI:10.1088/1361-665x/ad59e6
Jinmeng Zha and Zhen Zhang
{"title":"受布雷斯悖论启发的可逆负压缩超材料","authors":"Jinmeng Zha and Zhen Zhang","doi":"10.1088/1361-665x/ad59e6","DOIUrl":null,"url":null,"abstract":"Negative compressibility metamaterials have attracted significant attention due to their distinctive properties and promising applications. Negative compressibility has been interpreted in two ways. Regarding the negative compressibility induced by a uniaxial load, it can only occur abruptly when the load reaches a certain threshold. Hence, it can be termed as transient negative compressibility. However, fabrication and experiments of such metamaterials have rarely been reported. Herein, we demonstrate them. Inspired by Braess’s paradox, a novel mechanical model is proposed with reversible negative compressibility. It shows multiple types of force responses during a loading-unloading cycle, including transient negative compressibility and hysteresis. Phase diagrams are employed to visualize the relationship between force responses and system parameters. Besides, explicit expressions for the conditions and intensity of negative compressibility are obtained for design and optimization. The model replacement method inspired by compliant mechanism design is then introduced to derive specific unit cell structures, thus avoiding intuition-based approaches. Additive manufacturing technology is utilized to fabricate the prototypes, and negative compressibility is validated via simulations and experiments. Furthermore, it is demonstrated that metamaterials with transient negative compressibility can be activated through electrical heating and can function as actuators, thereby possessing machine-like properties. The proposed mechanical metamaterial and the introduced design methodology have potentials to impact micro-electromechanical systems, force sensors, protective devices, and other applications.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"117 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible negative compressibility metamaterials inspired by Braess’s Paradox\",\"authors\":\"Jinmeng Zha and Zhen Zhang\",\"doi\":\"10.1088/1361-665x/ad59e6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative compressibility metamaterials have attracted significant attention due to their distinctive properties and promising applications. Negative compressibility has been interpreted in two ways. Regarding the negative compressibility induced by a uniaxial load, it can only occur abruptly when the load reaches a certain threshold. Hence, it can be termed as transient negative compressibility. However, fabrication and experiments of such metamaterials have rarely been reported. Herein, we demonstrate them. Inspired by Braess’s paradox, a novel mechanical model is proposed with reversible negative compressibility. It shows multiple types of force responses during a loading-unloading cycle, including transient negative compressibility and hysteresis. Phase diagrams are employed to visualize the relationship between force responses and system parameters. Besides, explicit expressions for the conditions and intensity of negative compressibility are obtained for design and optimization. The model replacement method inspired by compliant mechanism design is then introduced to derive specific unit cell structures, thus avoiding intuition-based approaches. Additive manufacturing technology is utilized to fabricate the prototypes, and negative compressibility is validated via simulations and experiments. Furthermore, it is demonstrated that metamaterials with transient negative compressibility can be activated through electrical heating and can function as actuators, thereby possessing machine-like properties. The proposed mechanical metamaterial and the introduced design methodology have potentials to impact micro-electromechanical systems, force sensors, protective devices, and other applications.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad59e6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad59e6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

负压缩性超材料因其独特的性能和广阔的应用前景而备受关注。负压缩性有两种解释。关于单轴载荷引起的负压缩性,只有当载荷达到一定临界值时才会突然发生。因此,它可以被称为瞬态负压缩性。然而,这种超材料的制作和实验却鲜有报道。在此,我们将对其进行演示。受布雷斯悖论的启发,我们提出了一种具有可逆负压缩性的新型力学模型。它在加载-卸载循环过程中显示出多种类型的力响应,包括瞬态负压缩性和滞后。采用相图来直观显示力响应与系统参数之间的关系。此外,还获得了负压缩性条件和强度的明确表达式,用于设计和优化。受顺应机构设计的启发,引入了模型替换法来推导特定的单胞结构,从而避免了基于直觉的方法。利用快速成型技术制造原型,并通过模拟和实验验证负压缩性。此外,研究还证明,具有瞬态负压缩性的超材料可通过电加热激活,并可用作致动器,从而具有类似机器的特性。所提出的机械超材料和所介绍的设计方法有望对微机电系统、力传感器、保护装置和其他应用产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reversible negative compressibility metamaterials inspired by Braess’s Paradox
Negative compressibility metamaterials have attracted significant attention due to their distinctive properties and promising applications. Negative compressibility has been interpreted in two ways. Regarding the negative compressibility induced by a uniaxial load, it can only occur abruptly when the load reaches a certain threshold. Hence, it can be termed as transient negative compressibility. However, fabrication and experiments of such metamaterials have rarely been reported. Herein, we demonstrate them. Inspired by Braess’s paradox, a novel mechanical model is proposed with reversible negative compressibility. It shows multiple types of force responses during a loading-unloading cycle, including transient negative compressibility and hysteresis. Phase diagrams are employed to visualize the relationship between force responses and system parameters. Besides, explicit expressions for the conditions and intensity of negative compressibility are obtained for design and optimization. The model replacement method inspired by compliant mechanism design is then introduced to derive specific unit cell structures, thus avoiding intuition-based approaches. Additive manufacturing technology is utilized to fabricate the prototypes, and negative compressibility is validated via simulations and experiments. Furthermore, it is demonstrated that metamaterials with transient negative compressibility can be activated through electrical heating and can function as actuators, thereby possessing machine-like properties. The proposed mechanical metamaterial and the introduced design methodology have potentials to impact micro-electromechanical systems, force sensors, protective devices, and other applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
期刊最新文献
Nonlinear vibration of a loaded string in energy harvesting Three-dimensional free-standing heterostructures out of MoS2 and rGO with infused PDMS towards electromechanical pressure sensing An IGBT coupling structure with a smart service life reliability predictor using active learning Shape optimization of a non-uniform piezoelectric bending beam for human knee energy harvester A frequency steerable electromagnetic acoustic transducer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1