利用响应面方法(RSM)评估聚乙烯醇-壳聚糖纳米纤维电纺丝的有效参数

IF 2.8 4区 工程技术 Q2 POLYMER SCIENCE Macromolecular Research Pub Date : 2024-06-17 DOI:10.1007/s13233-024-00284-4
Alireza Rezaei, Seyed Mojtaba Zebarjad
{"title":"利用响应面方法(RSM)评估聚乙烯醇-壳聚糖纳米纤维电纺丝的有效参数","authors":"Alireza Rezaei,&nbsp;Seyed Mojtaba Zebarjad","doi":"10.1007/s13233-024-00284-4","DOIUrl":null,"url":null,"abstract":"<div><p>How to produce and fabricate polyvinyl alcohol–chitosan (PVA/CS) electrospun nanofibers to investigate the diameter and morphology of the fibers produced by experimental design software was investigated. The effects of voltage (14.32–17.05 kV), feed rate (0.2–2 ml/min), and PVA/CS mixing ratio (50–100 wt%) were studied to obtain optimal electrospinning conditions to achieve the minimum diameter and number of beads. Central Composite Design (CCD) was used to investigate and optimize the processing factors of PVA/CS nanofiber production. The nanofibers were examined using Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR). Nanofibers with diameters ranging from 40 to 250 nm were obtained. The presence of PVA/CS and functional compounds related to both substances in the resulting infrared spectra was confirmed. The results of CCD showed the effect of each variable on the diameter and quality of the fibers and finally suggested the optimal conditions.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 10","pages":"1005 - 1027"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the effective parameters on the electrospinning of polyvinyl alcohol–chitosan nanofibers using response surface methodology (RSM)\",\"authors\":\"Alireza Rezaei,&nbsp;Seyed Mojtaba Zebarjad\",\"doi\":\"10.1007/s13233-024-00284-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>How to produce and fabricate polyvinyl alcohol–chitosan (PVA/CS) electrospun nanofibers to investigate the diameter and morphology of the fibers produced by experimental design software was investigated. The effects of voltage (14.32–17.05 kV), feed rate (0.2–2 ml/min), and PVA/CS mixing ratio (50–100 wt%) were studied to obtain optimal electrospinning conditions to achieve the minimum diameter and number of beads. Central Composite Design (CCD) was used to investigate and optimize the processing factors of PVA/CS nanofiber production. The nanofibers were examined using Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR). Nanofibers with diameters ranging from 40 to 250 nm were obtained. The presence of PVA/CS and functional compounds related to both substances in the resulting infrared spectra was confirmed. The results of CCD showed the effect of each variable on the diameter and quality of the fibers and finally suggested the optimal conditions.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"32 10\",\"pages\":\"1005 - 1027\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13233-024-00284-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00284-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了如何生产和制造聚乙烯醇-壳聚糖(PVA/CS)电纺纳米纤维,通过实验设计软件研究了纤维的直径和形态。研究了电压(14.32-17.05 kV)、进料速度(0.2-2 ml/min)和 PVA/CS 混合比(50-100 wt%)的影响,以获得最佳电纺丝条件,实现最小直径和珠子数量。采用中央复合设计(CCD)研究并优化了 PVA/CS 纳米纤维生产的加工因素。使用扫描电子显微镜(SEM)和傅立叶变换红外光谱(FTIR)对纳米纤维进行了检测。纳米纤维的直径范围为 40 至 250 nm。由此产生的红外光谱证实了 PVA/CS 和与这两种物质相关的功能化合物的存在。CCD 的结果显示了每个变量对纤维直径和质量的影响,并最终提出了最佳条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of the effective parameters on the electrospinning of polyvinyl alcohol–chitosan nanofibers using response surface methodology (RSM)

How to produce and fabricate polyvinyl alcohol–chitosan (PVA/CS) electrospun nanofibers to investigate the diameter and morphology of the fibers produced by experimental design software was investigated. The effects of voltage (14.32–17.05 kV), feed rate (0.2–2 ml/min), and PVA/CS mixing ratio (50–100 wt%) were studied to obtain optimal electrospinning conditions to achieve the minimum diameter and number of beads. Central Composite Design (CCD) was used to investigate and optimize the processing factors of PVA/CS nanofiber production. The nanofibers were examined using Scanning Electron Microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR). Nanofibers with diameters ranging from 40 to 250 nm were obtained. The presence of PVA/CS and functional compounds related to both substances in the resulting infrared spectra was confirmed. The results of CCD showed the effect of each variable on the diameter and quality of the fibers and finally suggested the optimal conditions.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Research
Macromolecular Research 工程技术-高分子科学
CiteScore
4.70
自引率
8.30%
发文量
100
审稿时长
1.3 months
期刊介绍: Original research on all aspects of polymer science, engineering and technology, including nanotechnology Presents original research articles on all aspects of polymer science, engineering and technology Coverage extends to such topics as nanotechnology, biotechnology and information technology The English-language journal of the Polymer Society of Korea Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.
期刊最新文献
Biodegradable and antioxidant lignin-adsorbed polylactic acid microparticles for eco-friendly primary microparticles Discarded bamboo chopstick cellulose-based fibers for bio-based polybutylene succinate composite reinforcement Recent achievements in conjugated polymer-based gas sensors by side-chain engineering Antimicrobial polymer coatings on surfaces: preparation and activity Polymer-induced surface wrinkling and imine polymer-based doping of sol–gel zinc oxide in electrolyte-gated transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1