Joshua J. Guanzon, Matthew S. Winnel, Deepesh Singh, Austin P. Lund, Timothy C. Ralph
{"title":"利用线性光学饱和无噪声线性放大的最大成功概率边界","authors":"Joshua J. Guanzon, Matthew S. Winnel, Deepesh Singh, Austin P. Lund, Timothy C. Ralph","doi":"10.1103/prxquantum.5.020359","DOIUrl":null,"url":null,"abstract":"A noiseless linear amplifier (NLA) performs the highest-quality amplification allowable under the rules of quantum physics. Unfortunately, these same rules conspire against us via the no-cloning theorem, which constrains NLA operations to the domain of probabilistic processes. Nevertheless, they are useful for a wide variety of quantum protocols, with numerous proposals assuming access to an optimal NLA device that performs with the maximum possible success probability. Here we propose the first linear-optics NLA protocol that asymptotically achieves this success probability bound by modifying the Knill-Laflamme-Milburn near-deterministic teleporter into an amplifier.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"186 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saturating the Maximum Success Probability Bound for Noiseless Linear Amplification Using Linear Optics\",\"authors\":\"Joshua J. Guanzon, Matthew S. Winnel, Deepesh Singh, Austin P. Lund, Timothy C. Ralph\",\"doi\":\"10.1103/prxquantum.5.020359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A noiseless linear amplifier (NLA) performs the highest-quality amplification allowable under the rules of quantum physics. Unfortunately, these same rules conspire against us via the no-cloning theorem, which constrains NLA operations to the domain of probabilistic processes. Nevertheless, they are useful for a wide variety of quantum protocols, with numerous proposals assuming access to an optimal NLA device that performs with the maximum possible success probability. Here we propose the first linear-optics NLA protocol that asymptotically achieves this success probability bound by modifying the Knill-Laflamme-Milburn near-deterministic teleporter into an amplifier.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"186 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Saturating the Maximum Success Probability Bound for Noiseless Linear Amplification Using Linear Optics
A noiseless linear amplifier (NLA) performs the highest-quality amplification allowable under the rules of quantum physics. Unfortunately, these same rules conspire against us via the no-cloning theorem, which constrains NLA operations to the domain of probabilistic processes. Nevertheless, they are useful for a wide variety of quantum protocols, with numerous proposals assuming access to an optimal NLA device that performs with the maximum possible success probability. Here we propose the first linear-optics NLA protocol that asymptotically achieves this success probability bound by modifying the Knill-Laflamme-Milburn near-deterministic teleporter into an amplifier.