Fatin’Alyaa Zainuddin, Mohd Razi Ismail, Muhammad Asyraf Md Hatta, Shairul Izan Ramlee
{"title":"推进现代育种和基因组学方法,加快水稻改良:速度育种重点","authors":"Fatin’Alyaa Zainuddin, Mohd Razi Ismail, Muhammad Asyraf Md Hatta, Shairul Izan Ramlee","doi":"10.1007/s10681-024-03353-y","DOIUrl":null,"url":null,"abstract":"<p>Rice (<i>Oryza sativa</i> L.) is a common staple food widely cultivated and consumed globally. The increase in world population and slow genetic gain in rice production in the face of a rapidly evolving climate could cause food scarcity and decreased crop productivity. It is crucial to expedite the development and release of climate-resilient crop varieties through selective breeding and improvement to mitigate the impact of climate change. Speed breeding has emerged as a promising tool for rice breeding, offering the potential to accelerate the generation time. By streamlining the breeding process and reducing the time taken for each generation, speed breeding empowers breeders to screen for desired traits rapidly and efficiently, enhancing the selection and development of improved rice varieties to meet the growing global demand for food. This review focuses on the applications of speed breeding technology to accelerate rice breeding and further highlights the critical factors for speed breeding development in rice production, such as temperature, humidity, light, and genetic diversity. Understanding and optimizing these factors is vital in successfully implementing speed breeding technology in developing robust, high-yielding, and climate-resilient rice varieties for feeding the future.</p>","PeriodicalId":11803,"journal":{"name":"Euphytica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancement in modern breeding and genomic approaches to accelerate rice improvement: speed breeding focus\",\"authors\":\"Fatin’Alyaa Zainuddin, Mohd Razi Ismail, Muhammad Asyraf Md Hatta, Shairul Izan Ramlee\",\"doi\":\"10.1007/s10681-024-03353-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rice (<i>Oryza sativa</i> L.) is a common staple food widely cultivated and consumed globally. The increase in world population and slow genetic gain in rice production in the face of a rapidly evolving climate could cause food scarcity and decreased crop productivity. It is crucial to expedite the development and release of climate-resilient crop varieties through selective breeding and improvement to mitigate the impact of climate change. Speed breeding has emerged as a promising tool for rice breeding, offering the potential to accelerate the generation time. By streamlining the breeding process and reducing the time taken for each generation, speed breeding empowers breeders to screen for desired traits rapidly and efficiently, enhancing the selection and development of improved rice varieties to meet the growing global demand for food. This review focuses on the applications of speed breeding technology to accelerate rice breeding and further highlights the critical factors for speed breeding development in rice production, such as temperature, humidity, light, and genetic diversity. Understanding and optimizing these factors is vital in successfully implementing speed breeding technology in developing robust, high-yielding, and climate-resilient rice varieties for feeding the future.</p>\",\"PeriodicalId\":11803,\"journal\":{\"name\":\"Euphytica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euphytica\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10681-024-03353-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euphytica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10681-024-03353-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Advancement in modern breeding and genomic approaches to accelerate rice improvement: speed breeding focus
Rice (Oryza sativa L.) is a common staple food widely cultivated and consumed globally. The increase in world population and slow genetic gain in rice production in the face of a rapidly evolving climate could cause food scarcity and decreased crop productivity. It is crucial to expedite the development and release of climate-resilient crop varieties through selective breeding and improvement to mitigate the impact of climate change. Speed breeding has emerged as a promising tool for rice breeding, offering the potential to accelerate the generation time. By streamlining the breeding process and reducing the time taken for each generation, speed breeding empowers breeders to screen for desired traits rapidly and efficiently, enhancing the selection and development of improved rice varieties to meet the growing global demand for food. This review focuses on the applications of speed breeding technology to accelerate rice breeding and further highlights the critical factors for speed breeding development in rice production, such as temperature, humidity, light, and genetic diversity. Understanding and optimizing these factors is vital in successfully implementing speed breeding technology in developing robust, high-yielding, and climate-resilient rice varieties for feeding the future.
期刊介绍:
Euphytica is an international journal on theoretical and applied aspects of plant breeding. It publishes critical reviews and papers on the results of original research related to plant breeding.
The integration of modern and traditional plant breeding is a growing field of research using transgenic crop plants and/or marker assisted breeding in combination with traditional breeding tools. The content should cover the interests of researchers directly or indirectly involved in plant breeding, at universities, breeding institutes, seed industries, plant biotech companies and industries using plant raw materials, and promote stability, adaptability and sustainability in agriculture and agro-industries.