亲油性硅酸镁锂促成透明 PVDF 基电解质用于固态锂电池

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-02 DOI:10.1007/s12598-024-02858-8
Yue Zhang, Jun-Hong Li, Man Ge, Yun-Hui Huang, Heng-Hui Xu
{"title":"亲油性硅酸镁锂促成透明 PVDF 基电解质用于固态锂电池","authors":"Yue Zhang, Jun-Hong Li, Man Ge, Yun-Hui Huang, Heng-Hui Xu","doi":"10.1007/s12598-024-02858-8","DOIUrl":null,"url":null,"abstract":"<p>Solid-state batteries with solid polymer electrolytes are considered the most promising due to their high energy density and safety advantages. However, their development is hindered by the limitations of polymer electrolytes, such as low ionic conductivity, poor mechanical strength and inadequate fire resistance. This study presents a thin polyvinylidene fluoride-based composite solid electrolyte film (25 μm) incorporating two-dimensional modified lipophilic lithium magnesium silicate (LLS) as additives with good dispersibility. The incorporation of LLS promotes grain refinement in polyvinylidene fluoride (PVDF), enhances the densification of electrolyte films, increases the tensile strength to 10.42 MPa and the elongation to 251.58%, improves ion transport interface, and facilitates uniform deposition of lithium ions. Furthermore, LLS demonstrates strong adsorption ability, promoting the formation of solvated molecules, resulting in high ionic conductivity (2.07 × 10<sup>−4</sup> S·cm<sup>−1</sup> at 30 °C) and a stable lithium/electrolyte interface. Symmetric Li//Li cells assembled with the thin composite electrolytes exhibit stable cycling for 2000 h at 0.1 mA·cm<sup>−2</sup> and 0.05 mAh·cm<sup>−2</sup>. Additionally, the LiFePO<sub>4</sub>//Li battery shows a capacity retention rate of 99.9% after 200 cycles at 0.5C and room temperature.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent PVDF-based electrolyte enabled by lipophilic lithium magnesium silicate for solid-state lithium batteries\",\"authors\":\"Yue Zhang, Jun-Hong Li, Man Ge, Yun-Hui Huang, Heng-Hui Xu\",\"doi\":\"10.1007/s12598-024-02858-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid-state batteries with solid polymer electrolytes are considered the most promising due to their high energy density and safety advantages. However, their development is hindered by the limitations of polymer electrolytes, such as low ionic conductivity, poor mechanical strength and inadequate fire resistance. This study presents a thin polyvinylidene fluoride-based composite solid electrolyte film (25 μm) incorporating two-dimensional modified lipophilic lithium magnesium silicate (LLS) as additives with good dispersibility. The incorporation of LLS promotes grain refinement in polyvinylidene fluoride (PVDF), enhances the densification of electrolyte films, increases the tensile strength to 10.42 MPa and the elongation to 251.58%, improves ion transport interface, and facilitates uniform deposition of lithium ions. Furthermore, LLS demonstrates strong adsorption ability, promoting the formation of solvated molecules, resulting in high ionic conductivity (2.07 × 10<sup>−4</sup> S·cm<sup>−1</sup> at 30 °C) and a stable lithium/electrolyte interface. Symmetric Li//Li cells assembled with the thin composite electrolytes exhibit stable cycling for 2000 h at 0.1 mA·cm<sup>−2</sup> and 0.05 mAh·cm<sup>−2</sup>. Additionally, the LiFePO<sub>4</sub>//Li battery shows a capacity retention rate of 99.9% after 200 cycles at 0.5C and room temperature.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02858-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02858-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用固体聚合物电解质的固态电池具有能量密度高和安全的优点,因此被认为是最有前途的电池。然而,聚合物电解质的局限性阻碍了其发展,例如离子导电率低、机械强度差和耐火性不足。本研究提出了一种基于聚偏二氟乙烯的复合固体电解质薄膜(25 μm),其中加入了具有良好分散性的二维改性亲脂硅酸锂镁(LLS)添加剂。LLS 的加入可促进聚偏二氟乙烯(PVDF)的晶粒细化,提高电解质薄膜的致密性,将拉伸强度提高到 10.42 兆帕,将伸长率提高到 251.58%,改善离子传输界面,促进锂离子的均匀沉积。此外,LLS 还具有很强的吸附能力,能促进溶解分子的形成,从而产生很高的离子电导率(30 °C 时为 2.07 × 10-4 S-cm-1)和稳定的锂/电解质界面。使用薄复合电解质组装的对称锂/锂电池在 0.1 mA-cm-2 和 0.05 mAh-cm-2 下可稳定循环 2000 小时。此外,在 0.5C 和室温条件下循环 200 次后,磷酸铁锂/锂电池的容量保持率达到 99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transparent PVDF-based electrolyte enabled by lipophilic lithium magnesium silicate for solid-state lithium batteries

Solid-state batteries with solid polymer electrolytes are considered the most promising due to their high energy density and safety advantages. However, their development is hindered by the limitations of polymer electrolytes, such as low ionic conductivity, poor mechanical strength and inadequate fire resistance. This study presents a thin polyvinylidene fluoride-based composite solid electrolyte film (25 μm) incorporating two-dimensional modified lipophilic lithium magnesium silicate (LLS) as additives with good dispersibility. The incorporation of LLS promotes grain refinement in polyvinylidene fluoride (PVDF), enhances the densification of electrolyte films, increases the tensile strength to 10.42 MPa and the elongation to 251.58%, improves ion transport interface, and facilitates uniform deposition of lithium ions. Furthermore, LLS demonstrates strong adsorption ability, promoting the formation of solvated molecules, resulting in high ionic conductivity (2.07 × 10−4 S·cm−1 at 30 °C) and a stable lithium/electrolyte interface. Symmetric Li//Li cells assembled with the thin composite electrolytes exhibit stable cycling for 2000 h at 0.1 mA·cm−2 and 0.05 mAh·cm−2. Additionally, the LiFePO4//Li battery shows a capacity retention rate of 99.9% after 200 cycles at 0.5C and room temperature.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Zeolite polymer membrane as protective interface for Mg battery Enhancing coercivity and thermal stability of (Nd,Y)–Fe–B sintered magnets through lamellar structure design Designing (Hf,Ta)Fe2-based zero thermal expansion composites consisting of multiple Laves phases Ferroelectric perovskite PbTiO3 for advanced photocatalysis In situ revealing C–C coupling behavior for CO2 electroreduction on tensile strain Ptδ+–Cuδ+ dual sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1