揭示掺杂 N 的碳中吡啶 N 与 Sn 位点的相互作用,提高二氧化碳还原能力

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-02 DOI:10.1007/s12598-024-02795-6
Hui-Juan Yang, Xu-Hong Yan, Cheng Yan, Zi-Qin Min, Lei Chai, Chun-Ran Wang, Li-Na Chen, Wei Xiao, Tao Wang, Chong Xie, Da-Wei Pang, Xi-Fei Li
{"title":"揭示掺杂 N 的碳中吡啶 N 与 Sn 位点的相互作用,提高二氧化碳还原能力","authors":"Hui-Juan Yang, Xu-Hong Yan, Cheng Yan, Zi-Qin Min, Lei Chai, Chun-Ran Wang, Li-Na Chen, Wei Xiao, Tao Wang, Chong Xie, Da-Wei Pang, Xi-Fei Li","doi":"10.1007/s12598-024-02795-6","DOIUrl":null,"url":null,"abstract":"<p>N-doped carbon (NC) materials have emerged as attractive supports for metal-based catalysts, enhancing their catalytic performance through the metal–support interactions. However, gaining fundamental insights into the metal–support interaction between NC support and Sn metal sites for improving the electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) performance remains challenging. Here, we reveal that pyridinic N in NC support indirectly induces the net electron distribution of Sn sites to exhibit optimal adsorption of HCOO* and HCOOH* by combining theoretical simulations and experiments, while pyrrolic N and graphitic N present weaker adsorption of HCOO* and stronger adsorption of HCOOH*, respectively. Consequently, the catalyst comprising NC with abundant pyridinic N loaded SnO<sub>2</sub> quantum dots exhibits excellent CO<sub>2</sub>RR performance, achieving high partial formate activity (over 90 mA. cm<sup>−2</sup> in an H-cell and 200 mA. cm<sup>−2</sup> in a flow cell) and impressive Faradaic efficiency for formate (approximately 90%). This work provides valuable insights into intricate metal–support interactions, thereby offering guidance for the future design and development of CO<sub>2</sub>RR electrocatalysts.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing interaction of pyridinic N in N-doped carbon with Sn sites for improved CO2 reduction\",\"authors\":\"Hui-Juan Yang, Xu-Hong Yan, Cheng Yan, Zi-Qin Min, Lei Chai, Chun-Ran Wang, Li-Na Chen, Wei Xiao, Tao Wang, Chong Xie, Da-Wei Pang, Xi-Fei Li\",\"doi\":\"10.1007/s12598-024-02795-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>N-doped carbon (NC) materials have emerged as attractive supports for metal-based catalysts, enhancing their catalytic performance through the metal–support interactions. However, gaining fundamental insights into the metal–support interaction between NC support and Sn metal sites for improving the electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) performance remains challenging. Here, we reveal that pyridinic N in NC support indirectly induces the net electron distribution of Sn sites to exhibit optimal adsorption of HCOO* and HCOOH* by combining theoretical simulations and experiments, while pyrrolic N and graphitic N present weaker adsorption of HCOO* and stronger adsorption of HCOOH*, respectively. Consequently, the catalyst comprising NC with abundant pyridinic N loaded SnO<sub>2</sub> quantum dots exhibits excellent CO<sub>2</sub>RR performance, achieving high partial formate activity (over 90 mA. cm<sup>−2</sup> in an H-cell and 200 mA. cm<sup>−2</sup> in a flow cell) and impressive Faradaic efficiency for formate (approximately 90%). This work provides valuable insights into intricate metal–support interactions, thereby offering guidance for the future design and development of CO<sub>2</sub>RR electrocatalysts.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12598-024-02795-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02795-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

掺杂 N 的碳(NC)材料已成为金属基催化剂的诱人支撑物,可通过金属与支撑物之间的相互作用提高催化性能。然而,要从根本上了解 NC 载体与 Sn 金属位点之间的金属-载体相互作用,以提高电催化 CO2 还原反应(CO2RR)的性能,仍然具有挑战性。在此,我们结合理论模拟和实验揭示了 NC 载体中的吡啶基 N 间接诱导 Sn 金属位点的净电子分布,从而表现出对 HCOO* 和 HCOOH* 的最佳吸附,而吡咯烷 N 和石墨 N 则分别表现出对 HCOO* 的较弱吸附和对 HCOOH* 的较强吸附。因此,由 NC 和大量吡啶 N 负载 SnO2 量子点组成的催化剂具有优异的 CO2RR 性能,实现了较高的部分甲酸活性(在 H 细胞中超过 90 mA. cm-2,在流动池中超过 200 mA. cm-2)和令人印象深刻的甲酸法拉第效率(约 90%)。这项工作提供了对错综复杂的金属-支撑相互作用的宝贵见解,从而为未来设计和开发 CO2RR 电催化剂提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing interaction of pyridinic N in N-doped carbon with Sn sites for improved CO2 reduction

N-doped carbon (NC) materials have emerged as attractive supports for metal-based catalysts, enhancing their catalytic performance through the metal–support interactions. However, gaining fundamental insights into the metal–support interaction between NC support and Sn metal sites for improving the electrocatalytic CO2 reduction reaction (CO2RR) performance remains challenging. Here, we reveal that pyridinic N in NC support indirectly induces the net electron distribution of Sn sites to exhibit optimal adsorption of HCOO* and HCOOH* by combining theoretical simulations and experiments, while pyrrolic N and graphitic N present weaker adsorption of HCOO* and stronger adsorption of HCOOH*, respectively. Consequently, the catalyst comprising NC with abundant pyridinic N loaded SnO2 quantum dots exhibits excellent CO2RR performance, achieving high partial formate activity (over 90 mA. cm−2 in an H-cell and 200 mA. cm−2 in a flow cell) and impressive Faradaic efficiency for formate (approximately 90%). This work provides valuable insights into intricate metal–support interactions, thereby offering guidance for the future design and development of CO2RR electrocatalysts.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Zeolite polymer membrane as protective interface for Mg battery Enhancing coercivity and thermal stability of (Nd,Y)–Fe–B sintered magnets through lamellar structure design Designing (Hf,Ta)Fe2-based zero thermal expansion composites consisting of multiple Laves phases Ferroelectric perovskite PbTiO3 for advanced photocatalysis In situ revealing C–C coupling behavior for CO2 electroreduction on tensile strain Ptδ+–Cuδ+ dual sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1