Elvis Díaz Machado;Jose Lopez Vicario;Enrique Miranda;Antoni Morell
{"title":"用于深度学习应用的晶体管交叉阵列仿真","authors":"Elvis Díaz Machado;Jose Lopez Vicario;Enrique Miranda;Antoni Morell","doi":"10.1109/TNANO.2024.3415382","DOIUrl":null,"url":null,"abstract":"Hardware neural networks (HNNs) based on crossbar arrays are expected to be energy-efficient computing architectures for solving complex tasks due to their small feature sizes. Although there exist software libraries able to deal with circuit simulation of memristor networks, they still exceed the memory available of any consumer grade GPU's VRAM for large scale crossbar arrays while having a significant computational complexity. This work discusses an iterative method to implement a fast simulation of the corresponding memristor crossbar array with much more limited memory use.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"512-515"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10559273","citationCount":"0","resultStr":"{\"title\":\"Memristor Crossbar Array Simulation for Deep Learning Applications\",\"authors\":\"Elvis Díaz Machado;Jose Lopez Vicario;Enrique Miranda;Antoni Morell\",\"doi\":\"10.1109/TNANO.2024.3415382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware neural networks (HNNs) based on crossbar arrays are expected to be energy-efficient computing architectures for solving complex tasks due to their small feature sizes. Although there exist software libraries able to deal with circuit simulation of memristor networks, they still exceed the memory available of any consumer grade GPU's VRAM for large scale crossbar arrays while having a significant computational complexity. This work discusses an iterative method to implement a fast simulation of the corresponding memristor crossbar array with much more limited memory use.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"512-515\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10559273\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10559273/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10559273/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Memristor Crossbar Array Simulation for Deep Learning Applications
Hardware neural networks (HNNs) based on crossbar arrays are expected to be energy-efficient computing architectures for solving complex tasks due to their small feature sizes. Although there exist software libraries able to deal with circuit simulation of memristor networks, they still exceed the memory available of any consumer grade GPU's VRAM for large scale crossbar arrays while having a significant computational complexity. This work discusses an iterative method to implement a fast simulation of the corresponding memristor crossbar array with much more limited memory use.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.