{"title":"弗拉索夫-泊松方程的数值流迭代","authors":"Matthias Kirchhart, R. Paul Wilhelm","doi":"10.1137/23m154710x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1972-A1997, June 2024. <br/> Abstract. We present the numerical flow iteration (NuFI) for solving the Vlasov–Poisson equation. In a certain sense specified later herein, NuFI provides infinite resolution of the distribution function. NuFI exactly preserves positivity, all [math]-norms, charge, and entropy. Numerical experiments show no energy drift. Furthermore NuFI requires several orders of magnitude less memory than conventional approaches, and can very efficiently be parallelized on GPU clusters. Low fidelity simulations provide good qualitative results for extended periods of time and can be computed on low-cost workstations.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Numerical Flow Iteration for the Vlasov–Poisson Equation\",\"authors\":\"Matthias Kirchhart, R. Paul Wilhelm\",\"doi\":\"10.1137/23m154710x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1972-A1997, June 2024. <br/> Abstract. We present the numerical flow iteration (NuFI) for solving the Vlasov–Poisson equation. In a certain sense specified later herein, NuFI provides infinite resolution of the distribution function. NuFI exactly preserves positivity, all [math]-norms, charge, and entropy. Numerical experiments show no energy drift. Furthermore NuFI requires several orders of magnitude less memory than conventional approaches, and can very efficiently be parallelized on GPU clusters. Low fidelity simulations provide good qualitative results for extended periods of time and can be computed on low-cost workstations.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m154710x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m154710x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The Numerical Flow Iteration for the Vlasov–Poisson Equation
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1972-A1997, June 2024. Abstract. We present the numerical flow iteration (NuFI) for solving the Vlasov–Poisson equation. In a certain sense specified later herein, NuFI provides infinite resolution of the distribution function. NuFI exactly preserves positivity, all [math]-norms, charge, and entropy. Numerical experiments show no energy drift. Furthermore NuFI requires several orders of magnitude less memory than conventional approaches, and can very efficiently be parallelized on GPU clusters. Low fidelity simulations provide good qualitative results for extended periods of time and can be computed on low-cost workstations.