Muqing Ren, Yichao Shi, Langqiu Xiao, Anqian Sun, Eric Johnston, Thomas E. Mallouk, Mark Allen, James H. Pikul
{"title":"具有可调交联结构的可生物降解水凝胶调节铝-空气电池中的铝氧化作用","authors":"Muqing Ren, Yichao Shi, Langqiu Xiao, Anqian Sun, Eric Johnston, Thomas E. Mallouk, Mark Allen, James H. Pikul","doi":"10.1557/s43579-024-00598-5","DOIUrl":null,"url":null,"abstract":"<p>Internet of Things (IoT) devices and small robots would benefit from higher-energy-density and disposable primary Al–air batteries, but corrosion and side reactions on the Al anode limit the widespread application of this chemistry. This paper studies how the physical and chemical characteristics of double-network hydrogel (DNH) electrolytes affect the anode oxidation, discharge morphology, and performance of Al–air batteries. The chemically crosslinked and physical–chemical crosslinked DNHs were made from biodegradable materials and showed enhanced corrosion inhibition compared to aqueous KOH solution, reducing the corrosion rate by 58% to 21 mmpy. An Al–air battery with a PVA-PAAM DNH extracted over 300 mAh cm<sup>−2</sup> from Al at 10 mA cm<sup>−2</sup>.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"32 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradable hydrogels with tunable cross-linking structures regulate Al oxidation in Al–air batteries\",\"authors\":\"Muqing Ren, Yichao Shi, Langqiu Xiao, Anqian Sun, Eric Johnston, Thomas E. Mallouk, Mark Allen, James H. Pikul\",\"doi\":\"10.1557/s43579-024-00598-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Internet of Things (IoT) devices and small robots would benefit from higher-energy-density and disposable primary Al–air batteries, but corrosion and side reactions on the Al anode limit the widespread application of this chemistry. This paper studies how the physical and chemical characteristics of double-network hydrogel (DNH) electrolytes affect the anode oxidation, discharge morphology, and performance of Al–air batteries. The chemically crosslinked and physical–chemical crosslinked DNHs were made from biodegradable materials and showed enhanced corrosion inhibition compared to aqueous KOH solution, reducing the corrosion rate by 58% to 21 mmpy. An Al–air battery with a PVA-PAAM DNH extracted over 300 mAh cm<sup>−2</sup> from Al at 10 mA cm<sup>−2</sup>.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00598-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00598-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
物联网(IoT)设备和小型机器人将受益于能量密度更高的一次性铝-空气原电池,但铝阳极上的腐蚀和副反应限制了这种化学物质的广泛应用。本文研究了双网水凝胶(DNH)电解质的物理和化学特性如何影响铝空气电池的阳极氧化、放电形态和性能。化学交联和物理化学交联的 DNH 由生物可降解材料制成,与 KOH 水溶液相比具有更强的腐蚀抑制能力,腐蚀率降低了 58% 至 21 mmpy。使用 PVA-PAAM DNH 的铝空气电池在 10 mA cm-2 的条件下从铝中提取了超过 300 mAh cm-2 的电量。
Biodegradable hydrogels with tunable cross-linking structures regulate Al oxidation in Al–air batteries
Internet of Things (IoT) devices and small robots would benefit from higher-energy-density and disposable primary Al–air batteries, but corrosion and side reactions on the Al anode limit the widespread application of this chemistry. This paper studies how the physical and chemical characteristics of double-network hydrogel (DNH) electrolytes affect the anode oxidation, discharge morphology, and performance of Al–air batteries. The chemically crosslinked and physical–chemical crosslinked DNHs were made from biodegradable materials and showed enhanced corrosion inhibition compared to aqueous KOH solution, reducing the corrosion rate by 58% to 21 mmpy. An Al–air battery with a PVA-PAAM DNH extracted over 300 mAh cm−2 from Al at 10 mA cm−2.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.